XML Print


1- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan, Iran.
2- Research and Development Unit, Glucosan Company, Alborz Industrial City, Qazvin, Iran.
3- Aran Zino Mahan Company, Zanjan, Iran.
Abstract:   (615 Views)
Background: The olive production industry is experiencing rapid growth owing to its health advantages. Nevertheless, a major challenge it encounters is the highly variable wastewater generated from olive oil mills (OMW). To tackle this issue, a range of treatment methods has been adopted, which include physical, thermal, biological, physicochemical, and biophysical treatments, as well as sedimentation, advanced oxidation processes, and combined approaches. This review emphasizes recent studies concerning techniques aimed at eliminating contaminants from OMW.
Methods: This review paper provides an overview of the approaches and technologies used to treat and recover OMW, based on an analysis of 50 peer-reviewed articles published between 2000 and 2025.
Results: OMW is characterized by high concentrations of salts (10 dSm-1), organic matter (130,000-200,000 mgL-1), suspended solids (2170-3480 mgL-1), and particularly phenols (360 mgL-1). It also exhibits high biological oxygen demand (18,000-77,000 mgL-1) and chemical oxygen demand (160,000-180,000 mgL-1). Typically, OMW is dark brown with a foul odor and contains significant amounts of organic and inorganic compounds, such as potassium (2700-7200 mgL-1), phosphorus (300-1100 mgL-1), and lipids (3.0-23 mgL-1).
Conclusion: The complexity of OMW shows that the scientific community has yet to determine a definitive treatment method. Combining technologies such as precipitation, adsorption, advanced oxidation, and membrane filtration has been shown to enhance the treatment of OMW.
     
Type of Study: Review Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/08/19 | Accepted: 2025/10/16

References
1. Aboutaleb, E., Kamel, G., & Hellal, M. (2018). Investigation of effective treatment techniques for olive mill wastewater. Egyptian Journal of Chemistry, 61(3), 415-422. [Crossref]
2. Akdemir, E. O., & Ozer, A. (2009). Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination, 249(2), 660-666. [Crossref]
3. Aktas, E. S., Imre, S., & Ersoy, L. (2001). Characterization and lime treatment of olive mill wastewater. Water Research, 35(9), 2336-2340. [Crossref]
4. Al Bawab, A., Ghannam, N., Abu-Mallouh, S., Bozeya, A., Abu-Zurayk, R. A., Al-Ajlouni, Y. A., . . . & Abu-Dalo, M. A. (2018). Olive mill wastewater treatment in Jordan: A Review. IOP Conference Series: Materials Science and Engineering, 305(1), 012002. [Crossref]
5. Alaoui, L., & Penta, A. (2016). Endogenous depth of reasoning. The Review of Economic Studies, 83(4), 1297-1333. [Crossref]
6. Al-Malah, K., Azzam, M. O., & Abu-Lail, N. I. (2000). Olive mills effluent (OME) wastewater post-treatment using activated clay. Separation and Purification Technology, 20(2-3), 225-234. [Crossref]
7. Al-Qodah, Z., Al-Bsoul, A., Assirey, E., & Al-Shannag, M. (2014). Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environmental Engineering & Management Journal,13(8), 2109-2118. [Crossref]
8. Arvanitoyannis, I. S., Kassaveti, A., & Stefanatos, S. (2007). Olive oil waste treatment: A comparative and critical presentation of methods, advantages & disadvantages. Critical Reviews in Food Science and Nutrition, 47(3), 187-229. [Crossref]
9. Asadifard, P., Zamani, A., Piri, F., & Piri, S. (2021). Synthesize cellulosic nano-composite structure from trash papers and its use for heavy metal removal from aqueous media. Journal of Human Environment and Health Promotion, 7(3), 138-145. [Crossref]
10. Assadi, A., Soudavari, A., & Mohammadian, M. (2016). Comparison of electrocoagulation and chemical coagulation processes in removing reactive red 196 from aqueous solution. Journal of Human Environment and Health Promotion, 1(3), 172-182. [Crossref]
11. Assas, N., Ayed, L., Marouani, L., & Hamdi, M. (2002). Decolorization of fresh and stored-black olive mill wastewaters by Geotrichum candidum. Process Biochemistry, 38(3), 361-365. [Crossref]
12. Awad, A., Salman, H., & Hung, Y. T. (2004). Olive oil waste treatment. In L. K. Wang, Y. T. Hung, H. H. Lo, & C. Yapijakis, Handbook of industrial and hazardous wastes treatment (pp. 810-893). CRC Press.
13. Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F., & Ozer, A. (2004). A review of waste management options in olive oil production. Critical Reviews in Environmental Science and Technology, 34(3), 209-247. [Crossref]
14. Azzam, M. O., Al-Malah, K. I., & Abu-Lail, N. I. (2004). Dynamic post-treatment response of olive mill effluent wastewater using activated carbon. Journal of Environmental Science and Health, 39(1), 269-280. [Crossref]
15. Barbera, A. C., Maucieri, C., Cavallaro, V., Ioppolo, A., & Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management, 119, 43-53. [Crossref]
16. Benaddi, R., Osmane, A., Zidan, K., El Harfi, K., & Ouazzani, N. (2023). A review on processes for olive mill waste water treatment. Ecological Engineering & Environmental Technology, 24(7), 196-207. [Crossref]
17. Borja, R., Raposo, F., & Rincón, B. (2006). Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Y Aceites, 57(1), 32-46. [Crossref]
18. Caputo, A. C., Scacchia, F., & Pelagagge, P. M. (2003). Disposal of by-products in olive oil industry: Waste-to-energy solutions. Applied Thermal Engineering, 23(2), 197-214. [Crossref]
19. Cereti, C. F., Rossini, F., Federici, F., Quaratino, D., Vassilev, N., & Fenice, M. (2004). Reuse of microbially treated olive mill wastewater as fertiliser for wheat (Triticum durum Desf.). Bioresource Technology, 91(2), 135-140. [Crossref]
20. Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167-176. [Crossref]
21. Eroğlu, E., Gündüz, U., Yücel, M., Türker, L., & Eroğlu, I. (2004). Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy, 29(2), 163-171. [Crossref]
22. Esteves, B. M., Morales-Torres, S., Maldonado-Hódar, F. J., & Madeira, L. M. (2021). Integration of olive stones in the production of Fe/AC-catalysts for the CWPO treatment of synthetic and real olive mill wastewater. Chemical Engineering Journal, 411, 128451. [Crossref]
23. Fadil, K., Chahlaoui, A., Ouahbi, A., Zaid, A., & Borja, R. (2003). Aerobic biodegradation and detoxification of wastewaters from the olive oil industry. International Biodeterioration & Biodegradation, 51(1), 37-41. [Crossref]
24. Fernández-Hernández, A., Roig, A., Serramiá, N., Civantos, C. G. O., & Sánchez-Monedero, M. A. (2014). Application of compost of two-phase olive mill waste on olive grove: Effects on soil, olive fruit and olive oil quality. Waste Management, 34(7), 1139-1147. [Crossref]
25. Foti, P., Romeo, F. V., Russo, N., Pino, A., Vaccalluzzo, A., Caggia, C., & Randazzo, C. L. (2021). Olive mill wastewater as renewable raw materials to generate high added-value ingredients for agro-food industries. Applied Sciences, 11(16), 7511. [Crossref]
26. Fountoulakis, M. S., Dokianakis, S. N., Kornaros, M. E., Aggelis, G. G., & Lyberatos, G. (2002). Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Research, 36(19), 4735-4744. [Crossref]
27. Hasani, R., Hosseinnejad, A., & Kariminia, H. (2024). Pretreatment of olive oil wastewater by coagulation-flocculation method and xanthan production. Iranian Chemical Engineering Journal, 22(131), 126-139.
28. International Olive Council. (2013-2014). Olive oil production in various countries in 2024. https://www.internationaloliveoil.org/olive-world/olive-oil/
29. Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., & Ammar, E. (2008). Olive mill wastewater stabilization in open-air ponds: Impact on clay-sandy soil. Bioresource Technology, 99(16), 7699-7708. [Crossref]
30. Karaouzas, I., Skoulikidis, N. T., Giannakou, U., & Albanis, T. A. (2011). Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status. Water Research, 45(19), 6334-6346. [Crossref]
31. Kavdir, Y., & Killi, D. (2008). Influence of olive oil solid waste applications on soil pH, electrical conductivity, soil nitrogen transformations, carbon content and aggregate stability. Bioresource Technology, 99(7), 2326-2332. [Crossref]
32. Khattabi Rifi, S., Aguelmous, A., El Fels, L., Hafidi, M., & Souabi, S. (2021). Effectiveness assessment of olive mill wastewater treatment by combined process: Natural flotation and anaerobic‐aerobic biodegradation. Water and Environment Journal, 35(3), 986-997. [Crossref]
33. Markou, G., Georgakakis, D., Plagou, K., Salakou, G., & Christopoulou, N. (2010). Balanced waste management of 2-and 3-phase olive oil mills in relation to the seed oil extraction plant. Terrestrial and Aquatic Environmental Toxicology, 4(1), 109-112.
34. Ochando-Pulido, J. M., Fragoso, R., Macedo, A., Duarte, E., & Ferez, A. M. (2016). A brief review on recent processes for the treatment of olive mill effluents. Products from Olive Tree, 1, 283-300. [Crossref]
35. Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: A review. Journal of Chemical Technology & Biotechnology, 81(9), 1475-1485. [Crossref]
36. Parvin, F., & Tareq, S. M. (2021). Impact of landfill leachate contamination on surface and groundwater of Bangladesh: A systematic review and possible public health risks assessment. Applied Water Science, 11(6), 100. [Crossref]
37. Peraldo-Neia, C., Migliardi, G., Mello-Grand, M., Montemurro, F., Segir, R., Pignochino, Y., . . . & Aglietta, M. (2011). Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer. BMC Cancer, 11, 1-12. [Crossref]
38. Piperidou, C. I., Chaidou, C. I., Stalikas, C. D., Soulti, K., Pilidis, G. A., & Balis, C. (2000). Bioremediation of olive oil mill wastewater: Chemical alterations induced by Azotobacter vinelandii. Journal of Agricultural and Food Chemistry, 48(5), 1941-1948. [Crossref]
39. Radmehr, R., Rafiee, M., & Yazdanbakhsh, A. (2022). Comparing the performance of UV/Acetylacetone and UV/O3 processes for treatment of olive mill wastewater. Environmental Health Engineering and Management Journal, 9(2), 115-123. [Crossref]
40. Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Lata, K., & Kishore, V. V. N. (2000). State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable and Sustainable Energy Reviews, 4(2), 135-156. [Crossref]
41. Rostami, A., Pourtalebi, B., Abdoli, S. M., & Akbari, A. (2024). An investigation into the effect of key parameters on cod reduction in synthetic wastewater with detergents using electrocoagulation process. Iranian Chemical Engineering Journal, 23(132), 44-55.
42. Salameh, W. K. B. (2015). Treatment of olive mill wastewater by ozonation and electrocoagulation processes. Civil and Environmental Research, 7(2), 80.
43. Sdiri Ghidaoui, J., Bargougui, L., Chaieb, M., & Mekki, A. (2019). Study of the phytotoxic potential of olive mill wastewaters on a leguminous plant ‘Vicia faba L.’. Water Science and Technology, 80(7), 1295-1303. [Crossref]
44. Seyed Mohammadi Fard, S. M., Ghasemi Afshar, P., & Adeli Milani, M. (2020). A comparison of the quality characteristics of the virgin and refined olive oils supplied in Tarom Region, Iran (2019). Journal of Human Environment and Health Promotion, 6(2), 83-90. [Crossref]
45. Seyrafian, N., Pournouri, M., Ghaffarzadeh, H., & Simbar, R. (2025). Developing a model for assessing environmental insurance premiums related to maritime loss and pollution from the oil and gas industries. Journal of Human Environment and Health Promotion, 11(1), 54-61. [Crossref]
46. Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R. Z., & Almalki, W. H. (2023). Treatment technologies for olive mill wastewater with impacts on plants. Environmental Research, 216, 114399. [Crossref]
47. Sierra, J., Martı, E., Montserrat, G., Cruanas, R., & Garau, M. A. (2001). Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Science of the Total Environment, 279(1-3), 207-214. [Crossref]
48. Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., & Galanakis, C. M. (2017). Olive oil production sector: Environmental effects and sustainability challenges. In C. M. Galanakis, Olive mill waste (pp. 1-28). Academic Press. [Crossref]
49. Tsagaraki, E., Lazarides, H. N., & Petrotos, K. B. (2007). Olive mill wastewater treatment. In V. Oreopoulou, & W. Russ, Utilization of by-products and treatment of waste in the food industry (pp. 133-157). Springer US. [Crossref]
50. Wildman, R. E. C. (2002). Handbook of nutraceuticals and functional foods. CRC Press. [Crossref]
51. Yousefi, Z., Rezaeigolestani, M., & Hashemi, M. (2018). Biological properties of olive oil. Journal of Human Environment and Health Promotion, 4(2), 50-54. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb