XML Print


1- Department of Environmental Health, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
Abstract:   (268 Views)
Background: The increasing prevalence of drug-resistant pathogens has drawn researchers' attention to studies on the antimicrobial activity of various substances. This study investigates the antimicrobial effects of the Agrimonia eupatoria and Nepeta Crispa extracts, which are used as herbal medicines.
Methods: The study investigated the effects of extract concentrations of 10, 20, and 40 mg/mL on three distinct bacterial strains, encompassing both types of Gram-positive and Gram-negative bacteria, including Escherichia coli, Shigella, and Clostridium perfringens. The evaluation employed the well diffusion method, supplemented by the determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). 
Results: The results showed that the Nepeta Crispa extract exhibited no antimicrobial effects at various concentrations, whereas the Agrimonia eupatoria extract was effective against all three types of bacteria, with the diameter of the inhibition zones increasing with higher concentrations. At a concentration of 40 mg/mL, the diameter of inhibition against the three types of bacteria was approximately 8 mm. The Minimum Inhibitory Concentration for Escherichia coli and Shigella was 2.5 mg/mL, and for Clostridium perfringens, it was 1.25 mg/mL. The Minimum Bactericidal Concentration for Escherichia coli, Shigella, and Clostridium perfringens was found to be 2.5 mg/mL, 5 mg/mL, and 2.5 mg/mL, respectively.
Conclusion: The extracts of some plants, such as Agrimonia eupatoria have antibacterial properties, but their usage of them needs more investigation.
     
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/01/22 | Accepted: 2025/05/19

References
1. Abbas, A., Naqvi, S. A. R., Rasool, M. H., Noureen, A., Mubarik, M. S., & Tareen, R. B. (2021). Phytochemical analysis, antioxidant and antimicrobial screening of Seriphidium oliverianum plant extracts. Dose-response, 19(1), 1-9. [Crossref]
2. Al Laham, S. A., & Al Fadel, F. M. (2014). Antibacterial activity of various plants extracts against antibiotic-resistant Aeromonas hydrophila. Jundishapur Journal of Microbiology, 7(7), e11370. [Crossref]
3. Almagboul, A. Z., Bashir, A. K., Farouk, A., & Salih, A. K. M. (1985). Antimicrobial activity of certain Sudanese plants used in folkloric medicine. Screening for antibacterial activity (IV). Fitoterapia, 56(6), 331-337.
4. Álvarez-Martínez, F. J., Rodríguez, J. C., Borrás-Rocher, F., Barrajón-Catalán, E., & Micol, V. (2021). The antimicrobial capacity of Cistus salviifolius and Punica granatum plant extracts against clinical pathogens is related to their polyphenolic composition. Scientific Reports, 11(1), 588. [Crossref]
5. Artizzu, N., Bonsignore, L., Cottiglia, F., & Loy, G. (1996). Studies on the diuretic and antimicrobial activity of Cynodon dactylon essential oil. Fitoterapia, 67(2), 174-176.
6. Badrehadad, A., & Piri, K. (2014). Evaluation of the antioxidant potential of flowers of Russian olive (Elaeagnus angustifolia) and aerial parts of curled catmint (Nepeta crispa) in Hamedan Province. Plant Production Technology, 5(2), 1-10.
7. Barzegar, H., & Alizadeh Behbahani, B. (2023). Antimicrobial effect of Russian knapweed aqueous extract on Escherichia coli, Salmonella typhi, Listeria monocytogenes, and Bacillus cereus in vitro. Journal of Food Science and Technology, 20(143), 150-157.
8. Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Antimicrobial effect of edible plant extract on the growth of some foodborne bacteria including pathogens. Nutrafoods, 11, 99-104. [Crossref]
9. Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of Experimental Pharmacology, 15, 51-62. [Crossref]
10. Eloff, J. N. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology, 60(1), 1-8. [Crossref]
11. Ikram, M., & Inamul-Haq, I. H. (1984). Screening of medicinal plants for antimicrobial activities. III. Fitoterapia, 55(1), 62-64.
12. Izzo, A. A., di Carlo, G., Biscardi, D., de Fusco, R., Mascolo, N., Borrelli, F., . . . & Autore, G. (1995). Biological screening of Italian medicinal plants for antibacterial activity. Phytotherapy Research, 9(4), 281-286. [Crossref]
13. Janssen, A. M., Scheffer, J. J. C., & Baerheim Svendsen, A. (1987). Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of the test methods. Planta Medica, 53(5), 395-398. [Crossref]
14. Khalid, M., Amayreh, M., Sanduka, S., Salah, Z., Al-Rimawi, F., Al-Mazaideh, G. M., . . . & Shalayel, M. H. F. (2022). Assessment of antioxidant, antimicrobial, and anticancer activities of Sisymbrium officinale plant extract. Heliyon, 8(9), e10477. [Crossref]
15. Khazaei, M., & Mirazi, N. (2018). The effect of Agrimonia eupatoria leaf hydroalcoholic extract on carbon tetrachloride induced liver toxicity in male rats. Journal of Advances in Medical and Biomedical Research, 26(114), 84-97.
16. Krishnan, R., Arumugam, V., & Vasaviah, S. K. (2015). The MIC and MBC of silver nanoparticles against Enterococcus faecalis - A facultative anaerobe. Nanomedicine & Nanotechnology, 6(3), 285.
17. Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., . . . & Kamikawa, T. (1993). Structure-antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, 41(6), 1016-1019. [Crossref]
18. Martinez, M. J., Betancourt, J., Alonso-Gonzalez, N., & Jauregui, A. (1996). Screening of some Cuban medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, 52(3), 171-174. [Crossref]
19. Moazami, L., Babapour, A., & Garechahi, M. (2012). Antimicrobial effect of aqueous extract of saffron petals on some of food-borne bacterial pathogen. Journal of Food Hygiene, 2(1), 63-74.
20. Nazemi, A., Hashemi, M., Khataminejad, M., & Pourshamsian, K. (2005). Antimicrobial activity of aqueous and methanol extracts of Heracoleum Persicum. Medical Science Journal of Islamic Azad University Tehran Medical Branch, 15(2), 91-94.
21. Saffari, P., Majd, A., Jonoubi, P., & Najafi, F. (2021). Study of the vegetative structure of Agrimonia eupatoria L. in the in vivo and in vitro plants. Developmental Biology, 13(1), 53-62.
22. Salmanian, M., Ghadi, A., & Sharifzadeh Baei, M. (2023). In vitro evaluation of antibacterial effects of aqueous and alcoholic extracts of Echinops dichorus L. on Escherichia coli. Environment and Water Engineering, 9(4), 437-448.
23. Santos Filho, D., Sarti, S. J., Bastos, J. K., Leitäo Filho, H. D. F., Machado, J. O., Araújo, M. L. C., . . . & Abreu, J. E. (1990). Atividade antibacteriana de extratos vegetais/Antibacterial activity of plants extracts. Rev. Ciênc. Farm, 12, 47-69.
24. Sayyari, M., Moradifarsa, M., & Azizi, A. (2022). The effect of drought stress at different developmental stages on growth and some phytochemical parameters of Nepeta crispa. Journal of Crop Improvement, 24(2), 545-561.
25. Tato, M., López, Y., Morosini, M. I., Moreno-Bofarull, A., Garcia-Alonso, F., Gargallo-Viola, D., . . . & Cantón, R. (2014). Characterization of variables that may influence ozenoxacin in susceptibility testing, including MIC and MBC values. Diagnostic Microbiology and Infectious Disease, 78(3), 263-267. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb