1. Abbas, A., Naqvi, S. A. R., Rasool, M. H., Noureen, A., Mubarik, M. S., & Tareen, R. B. (2021). Phytochemical analysis, antioxidant and antimicrobial screening of Seriphidium oliverianum plant extracts. Dose-response, 19(1), 1-9. [
Crossref] [
Google Scholar]
2. Al Laham, S. A., & Al Fadel, F. M. (2014). Antibacterial activity of various plants extracts against antibiotic-resistant Aeromonas hydrophila. Jundishapur Journal of Microbiology, 7(7), e11370. [
Crossref] [
Google Scholar]
3. Almagboul, A. Z., Bashir, A. K., Farouk, A., & Salih, A. K. M. (1985). Antimicrobial activity of certain Sudanese plants used in folkloric medicine. Screening for antibacterial activity (IV). Fitoterapia, 56(6), 331-337. [
Google Scholar]
4. Álvarez-Martínez, F. J., Rodríguez, J. C., Borrás-Rocher, F., Barrajón-Catalán, E., & Micol, V. (2021). The antimicrobial capacity of Cistus salviifolius and Punica granatum plant extracts against clinical pathogens is related to their polyphenolic composition. Scientific Reports, 11(1), 588. [
Crossref] [
Google Scholar]
5. Artizzu, N., Bonsignore, L., Cottiglia, F., & Loy, G. (1996). Studies on the diuretic and antimicrobial activity of Cynodon dactylon essential oil. Fitoterapia, 67(2), 174-176. [
Google Scholar]
6. Badrehadad, A., & Piri, K. (2014). Evaluation of the antioxidant potential of flowers of Russian olive (Elaeagnus angustifolia) and aerial parts of curled catmint (Nepeta crispa) in Hamedan Province. Plant Production Technology, 5(2), 1-10. [
Google Scholar]
7. Barzegar, H., & Alizadeh Behbahani, B. (2023). Antimicrobial effect of Russian knapweed aqueous extract on Escherichia coli, Salmonella typhi, Listeria monocytogenes, and Bacillus cereus in vitro. Journal of Food Science and Technology, 20(143), 150-157. [
Google Scholar]
8. Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Antimicrobial effect of edible plant extract on the growth of some foodborne bacteria including pathogens. Nutrafoods, 11, 99-104. [
Crossref] [
Google Scholar]
9. Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of Experimental Pharmacology, 15, 51-62. [
Crossref] [
Google Scholar]
10. Eloff, J. N. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology, 60(1), 1-8. [
Crossref] [
Google Scholar]
11. Ikram, M., & Inamul-Haq, I. H. (1984). Screening of medicinal plants for antimicrobial activities. III. Fitoterapia, 55(1), 62-64.
12. Izzo, A. A., di Carlo, G., Biscardi, D., de Fusco, R., Mascolo, N., Borrelli, F., . . . & Autore, G. (1995). Biological screening of Italian medicinal plants for antibacterial activity. Phytotherapy Research, 9(4), 281-286. [
Crossref] [
Google Scholar]
13. Janssen, A. M., Scheffer, J. J. C., & Baerheim Svendsen, A. (1987). Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of the test methods. Planta Medica, 53(5), 395-398. [
Crossref] [
Google Scholar]
14. Khalid, M., Amayreh, M., Sanduka, S., Salah, Z., Al-Rimawi, F., Al-Mazaideh, G. M., . . . & Shalayel, M. H. F. (2022). Assessment of antioxidant, antimicrobial, and anticancer activities of Sisymbrium officinale plant extract. Heliyon, 8(9), e10477. [
Crossref] [
Google Scholar]
15. Khazaei, M., & Mirazi, N. (2018). The effect of Agrimonia eupatoria leaf hydroalcoholic extract on carbon tetrachloride induced liver toxicity in male rats. Journal of Advances in Medical and Biomedical Research, 26(114), 84-97. [
Google Scholar]
16. Krishnan, R., Arumugam, V., & Vasaviah, S. K. (2015). The MIC and MBC of silver nanoparticles against Enterococcus faecalis - A facultative anaerobe. Nanomedicine & Nanotechnology, 6(3), 285. [
Google Scholar]
17. Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., . . . & Kamikawa, T. (1993). Structure-antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, 41(6), 1016-1019. [
Crossref] [
Google Scholar]
18. Martinez, M. J., Betancourt, J., Alonso-Gonzalez, N., & Jauregui, A. (1996). Screening of some Cuban medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, 52(3), 171-174. [
Crossref] [
Google Scholar]
19. Moazami, L., Babapour, A., & Garechahi, M. (2012). Antimicrobial effect of aqueous extract of saffron petals on some of food-borne bacterial pathogen. Journal of Food Hygiene, 2(1), 63-74. [
Google Scholar]
20. Nascimento, G. G., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256. [
Crossref] [
Google Scholar]
21. Nazemi, A., Hashemi, M., Khataminejad, M., & Pourshamsian, K. (2005). Antimicrobial activity of aqueous and methanol extracts of Heracoleum Persicum. Medical Science Journal of Islamic Azad University Tehran Medical Branch, 15(2), 91-94. [
Google Scholar]
22. Pajohi-Alamoti, M., Yadollahi-baghloyi, M., & Bazargani-gillani, B. (2016). The effect of water extract of Rhus Coriaria L. on the pathogenic bacteria at different temperatures. Journal of Babol University of Medical Sciences, 18(2), 41-47. [
Crossref] [
Google Scholar]
23. Saffari, P., Majd, A., Jonoubi, P., & Najafi, F. (2021). Study of the vegetative structure of Agrimonia eupatoria L. in the in vivo and in vitro plants. Developmental Biology, 13(1), 53-62.
24. Salmanian, M., Ghadi, A., & Sharifzadeh Baei, M. (2023). In vitro evaluation of antibacterial effects of aqueous and alcoholic extracts of Echinops dichorus L. on Escherichia coli. Environment and Water Engineering, 9(4), 437-448. [
Google Scholar]
25. Santos Filho, D., Sarti, S. J., Bastos, J. K., Leitäo Filho, H. D. F., Machado, J. O., Araújo, M. L. C., . . . & Abreu, J. E. (1990). Atividade antibacteriana de extratos vegetais/Antibacterial activity of plants extracts. Rev. Ciênc. Farm, 12, 47-69. [
Google Scholar]
26. Sayyari, M., Moradifarsa, M., & Azizi, A. (2022). The effect of drought stress at different developmental stages on growth and some phytochemical parameters of Nepeta crispa. Journal of Crop Improvement, 24(2), 545-561. [
Google Scholar]
27. Tato, M., López, Y., Morosini, M. I., Moreno-Bofarull, A., Garcia-Alonso, F., Gargallo-Viola, D., . . . & Cantón, R. (2014). Characterization of variables that may influence ozenoxacin in susceptibility testing, including MIC and MBC values. Diagnostic Microbiology and Infectious Disease, 78(3), 263-267. [
Crossref] [
Google Scholar]