Volume 11, Issue 3 (7-2025)                   jhehp 2025, 11(3): 138-150 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baghaie A H, Keshavarzi M. Strategies to Enhance Bioremediation of Petroleum Hydrocarbon Degradation in Contaminated Environments: A Review. jhehp 2025; 11 (3) :138-150
URL: http://jhehp.zums.ac.ir/article-1-696-en.html
1- Department of Soil Science, Arak Branch, Islamic Azad University, Arak, Iran; Food Security Research Center, Arak Branch, Islamic Azad University, Arak, Iran; Research Center of Applied Plant Science, Arak Branch, Islamic Azad University, Arak, Iran.
2- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran.
Abstract:   (413 Views)
Background: Petroleum hydrocarbon contamination poses significant environmental and health risks due to its persistence and widespread occurrence. Bioremediation offers a sustainable, cost-effective solution by leveraging microbial degradation mechanisms.
Methods: A literature review was conducted using databases such as PubMed, Web of Science, and Scopus, focusing on peer-reviewed articles published within the last decade. Keywords related to petroleum hydrocarbon bioremediation guided the search, while inclusion/exclusion criteria ensured relevance and quality.
Results: The study revealed a wide array of microbial metabolic pathways capable of degrading hydrocarbons under both aerobic and anaerobic conditions, highlighting enzymatic versatility and genetic adaptability. Innovative enhancement strategies such as bioaugmentation with specialized consortia, biostimulation through nutrient optimization, surfactant-induced bioavailability improvement, and integration with nanotechnology and synthetic biology demonstrated substantial increases in remediation efficiency. Monitoring advancements, including molecular tools and real-time sensors, improved process understanding and control. The emergence of novel contaminants and complex mixtures necessitates adaptive, multidisciplinary approaches.
Conclusion: This review underscores the transformative potential of integrated bioremediation technologies in tackling petroleum pollution. Strategic combinations of microbial engineering, advanced materials, and ecological insights offer scalable solutions. These findings advocate for policy alignment and interdisciplinary collaboration to achieve sustainable environmental restoration.
Full-Text [PDF 926 kb]   (50 Downloads)    
Type of Study: Review Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/03/10 | Accepted: 2025/06/7 | Published: 2025/07/12

References
1. Adetitun, D. O., & Tomilayo, R. B. (2023). Ecological implications of bacterial degradation of alkanes in petroleum-contaminated environments: a review of microbial community dynamics and functional interactions. Global Journal of Pure and Applied Sciences, 29(2), 133-144. [Crossref] [Google Scholar]
2. Alaidaroos, B. A. (2023). Advancing eco-sustainable bioremediation for hydrocarbon contaminants: challenges and solutions. Processes, 11(10), 3036. [Crossref] [Google Scholar]
3. Alotaibi, F., Hijri, M., & St-Arnaud, M. (2021). Overview of approaches to improve rhizoremediation of petroleum hydrocarbon-contaminated soils. Applied Microbiology, 1(2), 329-351. [Crossref] [Google Scholar]
4. Anza, M., Salazar, O., Epelde, L., Becerril, J. M., Alkorta, I., & Garbisu, C. (2019). Remediation of organically contaminated soil through the combination of assisted phytoremediation and bioaugmentation. Applied Sciences, 9(22), 4757. [Crossref] [Google Scholar]
5. Azizi, S. M. M., Haffiez, N., Mostafa, A., Hussain, A., Abdallah, M., Al-Mamun, A., . . . & Dhar, B. R. (2024). Low-and high-temperature thermal hydrolysis pretreatment for anaerobic digestion of sludge: process evaluation and fate of emerging pollutants. Renewable and Sustainable Energy Reviews, 200, 114453. [Crossref] [Google Scholar]
6. Baghaie, A. H. (2022). Effect of organic amendments on biodegradation of diesel oil in Pb and Cd polluted soil enriched with vermicompost under ornamental sunflower cultivation. Journal of Human Environment and Health Promotion, 8(3), 137-143. [Crossref] [Google Scholar]
7. Baghaie, A. H., Ghafar Jabari, A., & Sattari, R. (2020). The effect of corn and white clover intercropping on biodegradation of diesel oil in arsenic contaminated soil in the presence of Piriformospora indica. Journal of Human Environment and Health Promotion, 6(2), 53-59. [Crossref] [Google Scholar]
8. Baghaie, A. H., Ghaffar Jabbari, A., & Nazmabadi, M. (2024). Effect of different iron fertilizers and P.indica fungus inoculation on diesel oil bio-degradation in drought-stressed soil. Journal of Human Environment and Health Promotion, 10(2), 111-117. [Crossref] [Google Scholar]
9. Baghaie, A. H., & Keshavarzi, M. (2018). The effect of montmorillonite Nano-clay on the changes in petroleum hydrocarbon degradation and Cd concentration in plants grown in Cd-polluted soil. Avicenna Journal of Environmental Health Engineering, 5(2), 100-105. [Crossref] [Google Scholar]
10. Baskaran, D., & Byun, H. S. (2024). Current trend of polycyclic aromatic hydrocarbon bioremediation: mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chemical Engineering Journal, 498, 155334. [Crossref] [Google Scholar]
11. Brindhadevi, K., Kim, P., AlSalhi, M. S., Abd Elkader, O. H., Naveena, T., Lee, J., & Bharathi, D. (2024). Deciphering the photocatalytic degradation of polyaromatic hydrocarbons (PAHs) using hausmannite (Mn3O4) nanoparticles and their efficacy against bacterial biofilm. Chemosphere, 349, 140961. [Crossref] [Google Scholar]
12. Brisson, J., Carvalho, P., Stein, O., Weber, K., Brix, H., Zhao, Y., & Zurita, F. (2024). Small-scale experiments: using mesocosms and microcosms for testing hypotheses in treatment wetland research. Ecological Engineering, 208, 107378. [Crossref] [Google Scholar]
13. Cameselle, C., & Reddy, K. R. (2022). Electrobioremediation: combined electrokinetics and bioremediation technology for contaminated site remediation. Indian Geotechnical Journal, 52(5), 1205-1225. [Crossref] [Google Scholar]
14. Cao, B., Nagarajan, K., & Loh, K. C. (2009). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85, 207-228. [Crossref] [Google Scholar]
15. Chen, H., Huang, D., Zhou, W., Deng, R., Yin, L., Xiao, R., . . . & Lei, Y. (2024). Hotspots lurking underwater: insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. Journal of Hazardous Materials, 476, 135132. [Crossref] [Google Scholar]
16. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 37(8), 817-837. [Crossref] [Google Scholar]
17. Dash, S., Naik D, J., & VS, C. (2024). Climate crisis and agricultural response: climate resilient crops for sustainability in food production systems. Journal of Experimental Agriculture International, 46(6), 440-458. [Crossref] [Google Scholar]
18. Erfani, H., Madhu, N. R., Khodayari, S., Qureshi, M. A., Singh, S. P., & Jadoun, S. (2024). Separation and removal of oil from water/wastewater in the oil industry: a review. Environmental Technology Reviews, 13(1), 325-343. [Crossref] [Google Scholar]
19. Faisal, R. M. (2019). Understanding the role of dibenzofuran 4, 4a dioxygenase reveals a silent pathway for biphenyl degradation in Sphingomonas wittichii RW1 and helps in engineering dioxin degrading strains. RUcore: Rutgers University Community Repository. https://rucore.libraries.rutgers.edu/rutgers-lib/61737/PDF/1/play/ [Google Scholar]
20. Geng, J., Fang, W., Liu, M., Yang, J., Ma, Z., & Bi, J. (2024). Advances and future directions of environmental risk research: a bibliometric review. Science of the Total Environment, 954, 176246. [Crossref] [Google Scholar]
21. Ghandehari, M., Kostarelos, K., & Vimer, C. S. (2018). Remote and in situ monitoring of subsurface liquid hydrocarbons. Optical Phenomenology and Applications, 28, 149-159. [Crossref] [Google Scholar]
22. Ghosh, S., Chowdhury, R., & Bhattacharya, P. (2016). Mixed consortia in bioprocesses: role of microbial interactions. Applied Microbiology and Biotechnology, 100, 4283-4295. [Crossref] [Google Scholar]
23. Gordegir, M., Oz, S., Yezer, I., Buhur, M., Unal, B., & Demirkol, D. O. (2019). Cells-on-nanofibers: effect of polyethyleneimine on hydrophobicity of poly-Ɛ-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme and Microbial Technology, 126, 24-31. [Crossref] [Google Scholar]
24. Han, J., Won, E. J., Kang, H. M., Lee, M. C., Jeong, C. B., Kim, H. S., . . . & Lee, J. (2017). Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. Marine Pollution Bulletin, 124(2), 953-961. [Crossref] [Google Scholar]
25. Karishma, S., Saravanan, A., Deivayanai, V. C., Ajithkumar, U., Yaashikaa, P. R., & Vickram, A. S. (2024). Emerging strategies for enhancing microbial degradation of petroleum hydrocarbons: Prospects and challenges. Bioresource Technology Reports, 26, 101866. [Crossref] [Google Scholar]
26. Khalid, N., Aqeel, M., Noman, A., Khan, S. M., & Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290, 118104. [Crossref] [Google Scholar]
27. Kim, J., Hwangbo, M., Shih, C. H., & Chu, K. H. (2023). Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. Water Research X, 20, 100187. [Crossref] [Google Scholar]
28. Kumar, P., & Raut, A. M. (2024). Microbes-assisted bioaugmentation process in the reduction of emerging industrial pollutants from soil. In Bioremediation of emerging contaminants from soils (pp. 519-540). Elsevier. [Crossref] [Google Scholar]
29. Kumari, B., & Singh, D. P. (2016). A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering, 97, 98-105. [Crossref] [Google Scholar]
30. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Reviews of Environmental Contamination and Toxicology, 236, 1-115. [Crossref] [Google Scholar]
31. Liu, L., Bilal, M., Duan, X., & Iqbal, H. M. (2019). Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives. Science of the Total Environment, 667, 444-454. [Crossref] [Google Scholar]
32. Lopes, P. R. M., Cruz, V. H., De Menezes, A. B., Gadanhoto, B. P., Moreira, B. R. D. A., Mendes, C. R., . . . & Montagnolli, R. N. (2022). Microbial bioremediation of pesticides in agricultural soils: an integrative review on natural attenuation, bioaugmentation and biostimulation. Reviews in Environmental Science and Bio/Technology, 21(4), 851-876. [Crossref] [Google Scholar]
33. Maqsood, Q., Waseem, R., Sumrin, A., Wajid, A., Tariq, M. R., Ali, S. W., & Mahnoor, M. (2024). Recent trends in bioremediation and bioaugmentation strategies for mitigation of marine based pollutants: current perspectives and future outlook. Discover Sustainability, 5(1), 524. [Crossref] [Google Scholar]
34. Mohapatra, B., & Phale, P. S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, 9, 602445. [Crossref] [Google Scholar]
35. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: a critical review of advances and knowledge gaps. Microorganisms, 11(3), 710. [Crossref] [Google Scholar]
36. Nandini, R., Amuthavallinayaki, M., Sangameswaran, R., & Arthe, R. (2023). A review on Nano enhanced bioremediation of toxic contaminants in the environment. International Journal of Modern Developments in Engineering and Science, 2(6), 28-34.
37. Nwankwegu, A. S., Zhang, L., Xie, D., Onwosi, C. O., Muhammad, W. I., Odoh, C. K., . . . & Idenyi, J. N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. [Crossref] [Google Scholar]
38. Oladosu, T. L., Pasupuleti, J., Kiong, T. S., Koh, S. P. J., & Yusaf, T. (2024). Energy management strategies, control systems, and artificial intelligence-based algorithms development for hydrogen fuel cell-powered vehicles: a review. International Journal of Hydrogen Energy, 61, 1380-1404. [Crossref] [Google Scholar]
39. Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Żarska, M., Chorążewski, M., Dzida, M., & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175-184. [Crossref] [Google Scholar]
40. Ranjan Maji, S., Chaitali, R., & Sinha, S. K. (2023). Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades. Journal of Analytical Sciences and Applied Biotechnology, 5(2),72-85. [Google Scholar]
41. Schoenaers, S., Vergauwen, L., Hagenaars, A., Vanhaecke, L., AbdElgawad, H., Asard, H., . . . & Knapen, D. (2016). Prioritization of contaminated watercourses using an integrated biomarker approach in caged carp. Water Research, 99, 129-139. [Crossref] [Google Scholar]
42. Song, B., Li, Z., Li, S., Zhang, Z., Fu, Q., Wang, S., . . . & Qi, S. (2021). Functional metagenomic and enrichment metatranscriptomic analysis of marine microbial activities within a marine oil spill area. Environmental Pollution, 274, 116555. [Crossref] [Google Scholar]
43. Tiwari, M., & Tripathy, D. B. (2023). Soil contaminants and their removal through surfactant-enhanced soil remediation: a comprehensive review. Sustainability, 15, 13161. [Crossref] [Google Scholar]
44. Upadhyay, N., Vishwakarma, K., Singh, J., Verma, R. K., Prakash, V., Jain, S., . . . & Sharma, S. (2019). Plant-microbe-soil interactions for reclamation of degraded soils: potential and challenges. Phyto and Rhizo Remediation, 9, 147-173. [Crossref] [Google Scholar]
45. Wang, S., Li, C., Zhang, L., Chen, Q., & Wang, S. (2024). Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. Environmental Research, 245, 117901. [Crossref] [Google Scholar]
46. Yang, H., Feng, Q., Zhu, J., Liu, G., Dai, Y., Zhou, Q., . . . & Zhang, Y. (2024). Towards sustainable futures: a review of sediment remediation and resource valorization techniques. Journal of Cleaner Production, 435, 140529. [Crossref] [Google Scholar]
47. Zahed, M. A., Matinvafa, M. A., Azari, A., & Mohajeri, L. (2022). Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discover Water, 2, 5. [Crossref] [Google Scholar]
48. Zakaria, N. N., Convey, P., Gomez-Fuentes, C., Zulkharnain, A., Sabri, S., Shaharuddin, N. A., & Ahmad, S. A. (2021). Oil bioremediation in the marine environment of antarctica: a review and bibliometric keyword cluster analysis. Microorganisms, 9(2), 419. [Crossref] [Google Scholar]
49. Zhao, X., Zhang, J., & Zhu, K. Y. (2019). Chito-protein matrices in arthropod exoskeletons and peritrophic matrices. Extracellular Sugar-Based Biopolymers Matrices, 12, 3-56. [Crossref] [Google Scholar]
50. Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., & Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chemical Engineering Journal, 372, 836-851. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb