XML Print


1- Department of Soil Science, Arak Branch, Islamic Azad University, Arak, Iran.
2- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran.
Abstract:   (102 Views)
Petroleum hydrocarbon contamination is a pervasive environmental challenge, primarily resulting from human activities such as oil spills and industrial discharges. This review synthesizes recent advancements in bioremediation strategies aimed at enhancing the microbial degradation of petroleum hydrocarbons in contaminated environments. Bioremediation leverages the natural metabolic capabilities of microorganisms to transform complex hydrocarbons into less harmful substances. Key approaches include biostimulation, which enhances the activity of indigenous microbial populations, and bioaugmentation, where specialized strains are introduced to improve degradation efficiency. The review also explores the integration of innovative technologies, such as nanotechnology and genetic engineering, to optimize bioremediation processes. Furthermore, it evaluates monitoring techniques for assessing bioremediation progress and identifies future research directions necessary for overcoming existing challenges in the field. By providing a comprehensive overview of current methodologies and emerging trends, this article aims to inform environmental scientists and policymakers about effective strategies for mitigating petroleum hydrocarbon pollution through enhanced bioremediation practices.
     
Type of Study: Review Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/04/21 | Accepted: 2025/06/19 | Published: 2025/07/12

References
1. Abavisani, M., Faraji, N., Faraji, S., Ebadpour, N., Kesharwani, P., & Sahebkar, A. (2024). A comprehensive review on utilizing CRISPR/Cas system for microbiome modification. Biochemical Engineering Journal, 211, 109443. [Crossref]
2. Adetitun, D. O., & Tomilayo, R. B. (2023). Ecological implications of bacterial degradation of alkanes in petroleum-contaminated environments: a review of microbial community dynamics and functional interactions. Global Journal of Pure and Applied Sciences, 29(2), 133-144. [Crossref]
3. Alaidaroos, B. A. (2023). Advancing eco-sustainable bioremediation for hydrocarbon contaminants: challenges and solutions. Processes, 11(10), 3036. [Crossref]
4. Alotaibi, F., Hijri, M., & St-Arnaud, M. (2021). Overview of approaches to improve rhizoremediation of petroleum hydrocarbon-contaminated soils. Applied Microbiology, 1(2), 329-351. [Crossref]
5. Anza, M., Salazar, O., Epelde, L., Becerril, J. M., Alkorta, I., & Garbisu, C. (2019). Remediation of organically contaminated soil through the combination of assisted phytoremediation and bioaugmentation. Applied Sciences, 9(22), 4757. [Crossref]
6. Azizi, S. M. M., Haffiez, N., Mostafa, A., Hussain, A., Abdallah, M., Al-Mamun, A., . . . & Dhar, B. R. (2024). Low-and high-temperature thermal hydrolysis pretreatment for anaerobic digestion of sludge: process evaluation and fate of emerging pollutants. Renewable and Sustainable Energy Reviews, 200, 114453. [Crossref]
7. Baghaie, A. H. (2022). Effect of organic amendments on biodegradation of diesel oil in Pb and Cd polluted soil enriched with vermicompost under ornamental sunflower cultivation. Journal of Human Environment and Health Promotion, 8(3), 137-143. [Crossref]
8. Baghaie, A. H., Ghafar Jabari, A., & Sattari, R. (2020). The effect of corn and white clover intercropping on biodegradation of diesel oil in arsenic contaminated soil in the presence of Piriformospora indica. Journal of Human Environment and Health Promotion, 6(2), 53-59. [Crossref]
9. Baghaie, A. H., Ghaffar Jabbari, A., & Nazmabadi, M. (2024). Effect of different iron fertilizers and P.indica fungus inoculation on diesel oil bio-degradation in drought-stressed soil. Journal of Human Environment and Health Promotion, 10(2), 111-117. [Crossref]
10. Baghaie, A. H., & Keshavarzi, M. (2018). The effect of montmorillonite Nano-clay on the changes in petroleum hydrocarbon degradation and Cd concentration in plants grown in Cd-polluted soil. Avicenna Journal of Environmental Health Engineering, 5(2), 100-105. [Crossref]
11. Baskaran, D., & Byun, H. S. (2024). Current trend of polycyclic aromatic hydrocarbon bioremediation: mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chemical Engineering Journal, 498, 155334. [Crossref]
12. Brindhadevi, K., Kim, P., AlSalhi, M. S., Abd Elkader, O. H., Naveena, T., Lee, J., & Bharathi, D. (2024). Deciphering the photocatalytic degradation of polyaromatic hydrocarbons (PAHs) using hausmannite (Mn3O4) nanoparticles and their efficacy against bacterial biofilm. Chemosphere, 349, 140961. [Crossref]
13. Brisson, J., Carvalho, P., Stein, O., Weber, K., Brix, H., Zhao, Y., & Zurita, F. (2024). Small-scale experiments: using mesocosms and microcosms for testing hypotheses in treatment wetland research. Ecological Engineering, 208, 107378. [Crossref]
14. Cameselle, C., & Reddy, K. R. (2022). Electrobioremediation: combined electrokinetics and bioremediation technology for contaminated site remediation. Indian Geotechnical Journal, 52(5), 1205-1225. [Crossref]
15. Cao, B., Nagarajan, K., & Loh, K. C. (2009). Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85, 207-228. [Crossref]
16. Chen, H., Huang, D., Zhou, W., Deng, R., Yin, L., Xiao, R., . . . & Lei, Y. (2024). Hotspots lurking underwater: insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. Journal of Hazardous Materials, 476, 135132. [Crossref]
17. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. (2019). Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 37(8), 817-837. [Crossref]
18. Chunyan, X., Qaria, M. A., Qi, X., & Daochen, Z. (2023). The role of microorganisms in petroleum degradation: current development and prospects. Science of the Total Environment, 865, 161112. [Crossref]
19. Dash, S., Naik D, J., & VS, C. (2024). Climate crisis and agricultural response: climate resilient crops for sustainability in food production systems. Journal of Experimental Agriculture International, 46(6), 440-458. [Crossref]
20. Erfani, H., Madhu, N. R., Khodayari, S., Qureshi, M. A., Singh, S. P., & Jadoun, S. (2024). Separation and removal of oil from water/wastewater in the oil industry: a review. Environmental Technology Reviews, 13(1), 325-343. [Crossref]
21. Faisal, R. M. (2019). Understanding the role of dibenzofuran 4, 4a dioxygenase reveals a silent pathway for biphenyl degradation in Sphingomonas wittichii RW1 and helps in engineering dioxin degrading strains. RUcore: Rutgers University Community Repository. https://rucore.libraries.rutgers.edu/rutgers-lib/61737/PDF/1/play/
22. Geng, J., Fang, W., Liu, M., Yang, J., Ma, Z., & Bi, J. (2024). Advances and future directions of environmental risk research: a bibliometric review. Science of the Total Environment, 954, 176246. [Crossref]
23. Ghandehari, M., Kostarelos, K., & Vimer, C. S. (2018). Remote and in situ monitoring of subsurface liquid hydrocarbons. Optical Phenomenology and Applications, 28, 149-159. [Crossref]
24. Ghosh, S., Chowdhury, R., & Bhattacharya, P. (2016). Mixed consortia in bioprocesses: role of microbial interactions. Applied Microbiology and Biotechnology, 100, 4283-4295. [Crossref]
25. Gordegir, M., Oz, S., Yezer, I., Buhur, M., Unal, B., & Demirkol, D. O. (2019). Cells-on-nanofibers: effect of polyethyleneimine on hydrophobicity of poly-Ɛ-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme and Microbial Technology, 126, 24-31. [Crossref]
26. Han, J., Won, E. J., Kang, H. M., Lee, M. C., Jeong, C. B., Kim, H. S., . . . & Lee, J. (2017). Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. Marine Pollution Bulletin, 124(2), 953-961. [Crossref]
27. Karishma, S., Saravanan, A., Deivayanai, V. C., Ajithkumar, U., Yaashikaa, P. R., & Vickram, A. S. (2024). Emerging strategies for enhancing microbial degradation of petroleum hydrocarbons: Prospects and challenges. Bioresource Technology Reports, 26, 101866. [Crossref]
28. Khalid, N., Aqeel, M., Noman, A., Khan, S. M., & Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290, 118104. [Crossref]
29. Kim, J., Hwangbo, M., Shih, C. H., & Chu, K. H. (2023). Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. Water Research X, 20, 100187. [Crossref]
30. Kumar, P., & Raut, A. M. (2024). Microbes-assisted bioaugmentation process in the reduction of emerging industrial pollutants from soil. In Bioremediation of emerging contaminants from soils (pp. 519-540). Elsevier. [Crossref]
31. Kumari, B., & Singh, D. P. (2016). A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering, 97, 98-105. [Crossref]
32. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Reviews of Environmental Contamination and Toxicology, 236, 1-115. [Crossref]
33. Liu, L., Bilal, M., Duan, X., & Iqbal, H. M. (2019). Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives. Science of the Total Environment, 667, 444-454. [Crossref]
34. Liu, X., Sathishkumar, K., Zhang, H., Saxena, K. K., Zhang, F., Naraginiti, S., . . . & Guo, X. (2024). Frontiers in environmental cleanup: recent advances in remediation of emerging pollutants from soil and water. Journal of Hazardous Materials Advances, 16, 100461. [Crossref]
35. Lopes, P. R. M., Cruz, V. H., De Menezes, A. B., Gadanhoto, B. P., Moreira, B. R. D. A., Mendes, C. R., . . . & Montagnolli, R. N. (2022). Microbial bioremediation of pesticides in agricultural soils: an integrative review on natural attenuation, bioaugmentation and biostimulation. Reviews in Environmental Science and Bio/Technology, 21(4), 851-876. [Crossref]
36. Malkawi, H. I., & Kapiel, T. Y. S. (2024). Microbial biotechnology: a key tool for addressing climate change and food insecurity. European Journal of Biology and Biotechnology, 5(2), 1-15. [Crossref]
37. Maqsood, Q., Waseem, R., Sumrin, A., Wajid, A., Tariq, M. R., Ali, S. W., & Mahnoor, M. (2024). Recent trends in bioremediation and bioaugmentation strategies for mitigation of marine based pollutants: current perspectives and future outlook. Discover Sustainability, 5(1), 524. [Crossref]
38. Mekonnen, B. A., Aragaw, T. A., & Genet, M. B. (2024). Bioremediation of petroleum hydrocarbon contaminated soil: a review on principles, degradation mechanisms, and advancements. Frontiers in Environmental Science, 12, 1354422. [Crossref]
39. Mohapatra, B., & Phale, P. S. (2021). Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, 9, 602445. [Crossref]
40. Mokrani, S., Houali, K., Yadav, K. K., Arabi, A. I. A., Eltayeb, L. B., AwjanAlreshidi, M., . . . & Nabti, E. H. (2024). Bioremediation techniques for soil organic pollution: mechanisms, microorganisms, and technologies-A comprehensive review. Ecological Engineering, 207, 107338. [Crossref]
41. Muter, O. (2023). Current trends in bioaugmentation tools for bioremediation: a critical review of advances and knowledge gaps. Microorganisms, 11(3), 710. [Crossref]
42. Nandini, R., Amuthavallinayaki, M., Sangameswaran, R., & Arthe, R. (2023). A review on Nano enhanced bioremediation of toxic contaminants in the environment. International Journal of Modern Developments in Engineering and Science, 2(6), 28-34.
43. Nwankwegu, A. S., Zhang, L., Xie, D., Onwosi, C. O., Muhammad, W. I., Odoh, C. K., . . . & Idenyi, J. N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313. [Crossref]
44. Obieze, C. C., Chikere, C. B., Selvarajan, R., Adeleke, R., Ntushelo, K., & Akaranta, O. (2020). Functional attributes and response of bacterial communities to nature-based fertilization during hydrocarbon remediation. International Biodeterioration & Biodegradation, 154, 105084. [Crossref]
45. Oladosu, T. L., Pasupuleti, J., Kiong, T. S., Koh, S. P. J., & Yusaf, T. (2024). Energy management strategies, control systems, and artificial intelligence-based algorithms development for hydrogen fuel cell-powered vehicles: a review. International Journal of Hydrogen Energy, 61, 1380-1404. [Crossref]
46. Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Żarska, M., Chorążewski, M., Dzida, M., & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175-184. [Crossref]
47. Ranjan Maji, S., Chaitali, R., & Sinha, S. K. (2023). Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades. Journal of Analytical Sciences and Applied Biotechnology, 5(2),72-85.
48. Rastogi, M., Verma, S., Kumar, S., Bharti, S., Kumar, G., Azam, K., & Singh, V. (2023). Soil health and sustainability in the age of organic amendments: a review. International Journal of Environment and Climate Change, 13(10), 2088-2102. [Crossref]
49. Satta, A., Ghiotto, G., Santinello, D., Giangeri, G., Bergantino, E., Modesti, M., . . . & Zampieri, G. (2024). Synergistic functional activity of a landfill microbial consortium in a microplastic-enriched environment. Science of the Total Environment, 947, 174696. [Crossref]
50. Saxena, V. (2025). Water quality, air pollution, and climate change: investigating the environmental impacts of industrialization and urbanization. Water, Air, & Soil Pollution, 236, 73. [Crossref]
51. Schoenaers, S., Vergauwen, L., Hagenaars, A., Vanhaecke, L., AbdElgawad, H., Asard, H., . . . & Knapen, D. (2016). Prioritization of contaminated watercourses using an integrated biomarker approach in caged carp. Water Research, 99, 129-139. [Crossref]
52. Song, B., Li, Z., Li, S., Zhang, Z., Fu, Q., Wang, S., . . . & Qi, S. (2021). Functional metagenomic and enrichment metatranscriptomic analysis of marine microbial activities within a marine oil spill area. Environmental Pollution, 274, 116555. [Crossref]
53. Tiwari, M., & Tripathy, D. B. (2023). Soil contaminants and their removal through surfactant-enhanced soil remediation: a comprehensive review. Sustainability, 15, 13161. [Crossref]
54. Upadhyay, N., Vishwakarma, K., Singh, J., Verma, R. K., Prakash, V., Jain, S., . . . & Sharma, S. (2019). Plant-microbe-soil interactions for reclamation of degraded soils: potential and challenges. Phyto and Rhizo Remediation, 9, 147-173. [Crossref]
55. Wang, S., Li, C., Zhang, L., Chen, Q., & Wang, S. (2024). Assessing the ecological impacts of polycyclic aromatic hydrocarbons petroleum pollutants using a network toxicity model. Environmental Research, 245, 117901. [Crossref]
56. Yang, H., Feng, Q., Zhu, J., Liu, G., Dai, Y., Zhou, Q., . . . & Zhang, Y. (2024). Towards sustainable futures: a review of sediment remediation and resource valorization techniques. Journal of Cleaner Production, 435, 140529. [Crossref]
57. Zahed, M. A., Matinvafa, M. A., Azari, A., & Mohajeri, L. (2022). Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discover Water, 2, 5. [Crossref]
58. Zakaria, N. N., Convey, P., Gomez-Fuentes, C., Zulkharnain, A., Sabri, S., Shaharuddin, N. A., & Ahmad, S. A. (2021). Oil bioremediation in the marine environment of antarctica: a review and bibliometric keyword cluster analysis. Microorganisms, 9(2), 419. [Crossref]
59. Zhao, X., Zhang, J., & Zhu, K. Y. (2019). Chito-protein matrices in arthropod exoskeletons and peritrophic matrices. Extracellular Sugar-Based Biopolymers Matrices, 12, 3-56. [Crossref]
60. Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., & Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chemical Engineering Journal, 372, 836-851. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb