XML Print


1- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
2- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Abstract:   (163 Views)
Background: Malt is a vital ingredient in the brewing and food industries, as it influences the sweetness, flavor, and color of the final products. The quality and soluble solids content of barley-derived malt depends on temperature, enzyme type, and grinding roller interval. This study aimed to determine the optimal conditions for maximizing the soluble solids in Iranian malt.
Methods: Malt samples were treated at 57 and 72 °C, employing glucan maltohydrolase (GMH) and glucohydrolase (GH) enzymes, and grinding roller intervals of 0.6, 0.8, and 1 mm. The malt samples were then subjected to chemical analyses, including Brix measurement, iodine test, and pH determination.
Results: The results showed that higher temperatures increased the Brix value and decreased the pH value of the malt samples. No significant differences in Brix and pH were observed between the GMH and GH enzymes. Smaller grinding roller intervals (0.6 mm) increased the Brix value and decreased the pH. The optimal conditions for maximizing the soluble solids content were 72 °C with the GMH enzyme and a 0.6 mm roller interval (Brix = 7.8 g/100 cc, pH = 5.32). The temperature significantly influenced the iodine test, confirming starch hydrolysis into sugar at 72 °C.
Conclusion: This study recommends reducing the grinding roller interval from 0.8 to 0.6 mm and increasing the temperature from 57 to 72 °C to significantly enhance the malting process. Therefore, using a 72 °C temperature and 0.6 mm roller gap is advised for better malting efficiency.
     
Type of Study: Original Article | Subject: Food Safety and Hygiene
Received: 2024/07/20 | Accepted: 2024/09/15 | Published: 2024/10/15

References
1. Brazil, C., Oliveira, D. F. D., Duarte, R. A., Galo, J. M., Lucchetta, L., Santos, E. d. C. D., & Hashimoto, E. H. (2019). β-Glucanase addition in brewing malt produced by reduced time of germination. Brazilian Archives of Biology and Technology, 62, e19180315. [Crossref]
2. Briggs, D., Wadeson, A., Statham, R., & Taylor, J. (1986). The use of extruded barley, wheat, and maize as adjuncts in mashing. Journal of the Institute of Brewing, 92(5), 468-474. [Crossref]
3. Čechovská, L., Konečný, M., Velíšek, J., & Cejpek, K. (2012). Effect of Maillard reaction on reducing the power of malts and beers. Czech Journal of Food Sciences, 30(6), 548. [Crossref]
4. Coghe, S., Gheeraert, B., Michiels, A., & Delvaux, F. R. (2006). Development of Maillard reaction-related characteristics during malt roasting. Journal of the Institute of Brewing, 112(2), 148-156. [Crossref]
5. Contreras‐Jiménez, B., Del Real, A., Millan‐Malo, B. M., Gaytán‐Martínez, M., Morales‐Sánchez, E., & Rodríguez‐García, M. E. (2019). Physicochemical changes in barley starch during malting. Journal of the Institute of Brewing, 125(1), 10-17. [Crossref]
6. De Arcangelis, E., Djurle, S., Andersson, A. A., Marconi, E., Messia, M. C., & Andersson, R. (2019). Structure analysis of β-glucan in barley and effects of wheat β-glucanase. Journal of Cereal Science, 85, 175-181. [Crossref]
7. Ekielski, A., Mishra, P. K., & Żelaziński, T. (2018). Assessing the influence of roasting process parameters on mepiquat and chlormequat formation in dark barley malts. Food and Bioprocess Technology, 11, 1177-1187. [Crossref]
8. El-Hashash, E. F., & El-Absy, K. M. (2019). Barley (Hordeum vulgare L.) breeding. Advances in Plant Breeding Strategies: Cereals: Volume 5, 1-45. [Crossref]
9. Eneje, L., Obiekezie, S., Aloh, C., & Agu, R. (2001). Effect of milling and mashing procedures on millet (Pennisetum maiwa) malt wort properties. Process Biochemistry, 36(8-9), 723-727. [Crossref]
10. Fleischer, H. (2019). The iodine test for reducing sugars-a safe, quick and easy alternative to copper (II) and silver (I) based reagents. World Journal of Chemical Education, 7(2), 45-52. [Crossref]
11. Fox, G. P., & Bettenhausen, H. M. (2023). Variation in quality of grains used in malting and brewing. Frontiers in Plant Science, 14, 1172028. [Crossref]
12. Guerra, N., Torrado-Agrasar, A., López-Macías, C., Martinez-Carballo, E., García-Falcón, S., Simal-Gándara, J., & Pastrana-Castro, L. (2009). Use of amylolytic enzymes in brewing. In Beer in health and disease prevention (pp. 113-126). Elsevier. [Crossref]
13. Gupta, M., Abu‐Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: Characteristic changes during malting, brewing, and applications of its by‐products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318-328. [Crossref]
14. Hua, X., & Yang, R. (2016). Enzymes in starch processing. Enzymes in Food and Beverage Processing, 139-170.
15. Iranian National Institute of Standards and Industrial Research. (2007). Malt beverage-test methods. [In Persian]. ISIRI.
16. Iranmanesh, M. R., & Salimi, F. (2018). The effect of temperature and enzyme on the brix of malt. Вісник Національної Академії Керівних Кадрів Культури І Мистецтв, 3.
17. Jaeger, A., Zannini, E., Sahin, A. W., & Arendt, E. K. (2021). Barley protein properties, extraction, and applications, with a focus on brewers’ spent grain protein. Foods, 10(6), 1389. [Crossref]
18. Jamar, C., Du Jardin, P., & Fauconnier, M. L. (2011). Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.): A review. Biotechnologie, Agronomie, Société et Environnement, 15(2).
19. Karki, D. B., & Kharel, G. P. (2012). Effect of finger millet varieties on chemical characteristics of their malts. African Journal of Food Science, 6(11), 308-316.
20. Kaur, P. T., Kaur, J. T., Kaur, K. T., & Bohra, J. (2021). Barley-based functional foods. In Cereals and cereal-based foods (pp. 3-18). Apple Academic Press. [Crossref]
21. Kharchenko, Y., Sharan, A., & Yeremeeva, O. (2021). Effect of flattening wheat grain on grinding modes in roller mill. [Crossref]
22. Kihara, M., Saito, W., Okada, Y., Kaneko, T., Asakura, T., & Ito, K. (2002). Relationship between proteinase activity during malting and malt quality. Journal of the Institute of Brewing, 108(3), 371-376. [Crossref]
23. Langenaeken, N. A., De Schepper, C. F., De Schutter, D. P., & Courtin, C. M. (2019). Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. Food Chemistry, 295, 138-146. [Crossref]
24. Mahdavi, A., Mirza Alizadeh, A., Azimzadeh, N., Moradpey, S., Abolhassani, M., Aminzare, M., . . . & Barani-Bonab, H. (2024). Technical characteristics and nutritional values of einkorn wheat: A literature review. Journal of Human Environment and Health Promotion, 10(3), 118-125. [Crossref]
25. Mallett, J. (2014). Malt: A practical guide from field to brewhouse. Brewers Publications.
26. Mousia, Z., Balkin, R., Pandiella, S., & Webb, C. (2004). The effect of milling parameters on starch hydrolysis of milled malt in the brewing process. Process Biochemistry, 39(12), 2213-2219. [Crossref]
27. Narwal, S., Gupta, O. P., Pandey, V., Kumar, D., & Ram, S. (2020). Effect of storage and processing conditions on nutrient composition of wheat and barley. In Wheat and barley grain biofortification (pp. 229-256). Elsevier. [Crossref]
28. Natoniewski, M., Rydzak, L., Wyciszkiewicz, A., & Guz, T. (2018). The effect of the malt grinding degree on the pH value and extract content in Beer mash. Agricultural Engineering, 22(4), 43-49. [Crossref]
29. Palmer, G. H. (2017). Barley and malt. In Handbook of brewing (pp. 107-128). CRC Press. [Crossref]
30. Punia, S. (2020). Barley: Properties, functionality, and applications. CRC Press. [Crossref]
31. Rani, H., & Bhardwaj, R. D. (2021). Quality attributes for barley malt: The backbone of beer. Journal of Food Science, 86(8), 3322-3340. [Crossref]
32. Rimsten, L., Haraldsson, A. K., Andersson, R., Alminger, M., Sandberg, A. S., & Åman, P. (2002). Effects of malting on β‐glucanase and phytase activity in barley grain. Journal of the Science of Food and Agriculture, 82(8), 904-912. [Crossref]
33. Rittenauer, M., Gladis, S., Gastl, M., & Becker, T. (2021). Gelatinization or pasting? The impact of different temperature levels on the saccharification efficiency of barley malt starch. Foods, 10(8), 1733. [Crossref]
34. Schwarz, P. B., Li, Y., Barr, J., & Horsley, R. D. (2007). Effect of operational parameters on the determination of laboratory extract and associated wort quality factors. Journal of the American Society of Brewing Chemists, 65(4), 219-228. [Crossref]
35. Sebestyén, A., Kiss, Z., Vecseri-Hegyes, B., Kun-Farkas, G., & Hoschke, Á. (2013). Experiences with laboratory and pilot plant preparation of millet and buckwheat beer. Acta Alimentaria, 42(Supplement-1), 81-89. [Crossref]
36. Taheri-Kafrani, A., Kharazmi, S., Nasrollahzadeh, M., Soozanipour, A., Ejeian, F., Etedali, P., . . . & Varma, R. S. (2021). Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Critical Reviews in Food Science and Nutrition, 61(19), 3160-3196. [Crossref]
37. Toffoli, F., Gianinetti, A., Cavallero, A., Finocchiaro, F., & Stanca, A. (2003). Effects of pulses of higher temperature on the development of enzyme activity during malting. Journal of the Institute of Brewing, 109(4), 337-341. [Crossref]
38. Van Boekel, M. (2001). Kinetic aspects of the Maillard reaction: A critical review. Food/Nahrung, 45(3), 150-159. [Crossref]
39. Yin Tan, W., Li, M., Devkota, L., Attenborough, E., & Dhital, S. (2023). Mashing performance as a function of malt particle size in beer production. Critical Reviews in Food Science and Nutrition, 63(21), 5372-5387. [Crossref]
40. Zeng, Y., Ahmed, H. G. M. D., Li, X., Yang, L. E., Pu, X., Yang, X., . . . & Yang, J. (2024). Actional mechanism of functional ingredients in beer and barley for human health. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb