Volume 11, Issue 2 (4-2025)                   jhehp 2025, 11(2): 94-102 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehdikhani A, Zamani A, Shamsi Z, Parizanganeh A, Keshvardoostchokami M, Abadi M. Application of Induction Furnace Dust as an Adsorbent for the Removal of Ciprofloxacin from Contaminated Water. jhehp 2025; 11 (2) :94-102
URL: http://jhehp.zums.ac.ir/article-1-692-en.html
1- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran.
Abstract:   (322 Views)
Background: The high production and consumption of various drugs have resulted in severe environmental problems. This study investigates the removal of the antibiotic ciprofloxacin (CIP) from contaminated water using Electric Arc Furnace Dust (EAFD). Environmental contamination by antibiotics can adversely affect the environment, especially living organisms. Such contamination contributes to the development of microbial resistance to drugs and hinders the treatment of diseases using established antibiotics.
Methods: Batch experiments were designed to evaluate the effects of initial ciprofloxacin concentrations (1-100 mg L-1), solution pH (1-11), and amount of adsorbent (0.5-15 g).
Results: The results revealed that optimal conditions for removing ciprofloxacin from contaminated water were achieved at an initial CIP concentration of 10 mg L-1 (50 mL), with a pH of 7 and a yield of 83 ± 5%, using 5 g of EAFD adsorbent. The pseudo-second-order and Temkin models were more consistent in predicting the kinetics and isotherms of the adsorption process, respectively.
Conclusion: The findings of this research demonstrate that EAFD is an effective adsorbent for removing CIP from contaminated water. Furthermore, this approach concurrently addresses two critical issues: CIP contamination and EAFD pollution.
Full-Text [PDF 1507 kb]   (46 Downloads)    
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/01/28 | Accepted: 2025/03/20 | Published: 2025/04/15

References
1. Adityosulindro, S., Barthe, L., González-Labrada, K., Haza, U. J. J., Delmas, H., & Julcour, C. (2017). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrasonics Sonochemistry, 39, 889-896. [Crossref] [Google Scholar]
2. Ahmad, A. A., Rahman, M. Y. A., Low, S. P., & Hamzah, H. (2011). Effect of LiBF44 salt concentration on the properties of plasticized Mg49-TiO2 based nanocomposite polymer electrolyte. ISRN Materials Science, 2011, 7. [Crossref] [Google Scholar]
3. Almeida, M. M., Saczk, A. A., da Silva Felix, F., Penido, E. S., Santos, T. A. R., de Souza Teixeira, A., & Magalhães, F. (2023). Characterization of electric arc furnace dust and its application in photocatalytic reactions to degrade organic contaminants in synthetic and real samples. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114585. [Crossref] [Google Scholar]
4. Alsheyab, M. A. (2013). SEM analysis on electron arc furnace dust (EAFD) and EAFD-asphalt mixture. Environment and Natural Resources Research, 3(4), 147-154. [Crossref] [Google Scholar]
5. Avcı, A., Inci, I., & Baylan, N. (2019). A comparative adsorption study with various adsorbents for the removal of ciprofloxacin hydrochloride from water. Water, Air, & Soil Pollution, 230, 250. [Crossref] [Google Scholar]
6. da Silva Magalhães, M., Faleschini, F., Pellegrino, C., & Brunelli, K. (2017). Effects of electric arc furnace dust (EAFD) addition on setting and strength evolutions of cement pastes and mortars. European Journal of Environmental and Civil Engineering, 21(13), 1-13. [Crossref] [Google Scholar]
7. Ferreira, F. B., Flores, B. D., Osório, E., & Vilela, A. C. F. (2018). Carbothermic reduction of electric arc furnace dust via thermogravimetry. REM-International Engineering Journal, 71(3), 411-418. [Crossref] [Google Scholar]
8. Gamboa, P. A., Ramírez-García, J. J., Solache-Ríos, M., Díaz-Nava, C., & Gallegos-Pérez, J. L. (2016). Comparison of different modified aluminosilicate networks for the removal of diclofenac. Desalination and Water Treatment, 57(55), 26401-26413. [Crossref] [Google Scholar]
9. Genç, N., Can Dogan, E., & Yurtsever, M. (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water Science and Technology, 68(4), 848-855. [Crossref] [Google Scholar]
10. Ghemit, R., Makhloufi, A., Djebri, N., Flilissa, A., Zerroual, L., & Boutahala, M. (2019). Adsorptive removal of diclofenac and ibuprofen from aqueous solution by organobentonites: study in single and binary systems. Groundwater for Sustainable Development, 8, 520-529. [Crossref] [Google Scholar]
11. Giannakis, S., Papoutsakis, S., Darakas, E., Escalas-Cañellas, A., Pétrier, C., & Pulgarin, C. (2015). Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater. Ultrasonics Sonochemistry, 22, 515-526. [Crossref] [Google Scholar]
12. Jalil, M. E. R., Baschini, M., & Sapag, K. (2015). Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 114, 69-76. [Crossref] [Google Scholar]
13. Keshvardoostchokami, M., Babaei, S., Piri, F., & Zamani, A. (2017). Nitrate removal from aqueous solutions by ZnO nanoparticles and chitosan-polystyrene-Zn nanocomposite: kinetic, isotherm, batch and fixed-bed studies. International Journal of Biological Macromolecules, 101, 922-930. [Crossref] [Google Scholar]
14. Khazri, H., Ghorbel-Abid, I., Kalfat, R., & Trabelsi-Ayadi, M. (2017). Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Applied Water Science, 7(6), 3031-3040. [Crossref] [Google Scholar]
15. Lancheros, J. C., Madera-Parra, C. A., Caselles-Osorio, A., Torres-López, W. A., & Vargas-Ramírez, X. M. (2019). Ibuprofen and Naproxen removal from domestic wastewater using a horizontal subsurface flow constructed wetland coupled to ozonation. Ecological Engineering, 135, 89-97. [Crossref] [Google Scholar]
16. Li, S., Zhang, X., & Huang, Y. (2017). Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. Journal of Hazardous Materials, 321, 711-719. [Crossref] [Google Scholar]
17. Liang, C., Zhang, X., Feng, P., Chai, H., & Huang, Y. (2018). ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chemical Engineering Journal, 344, 95-104. [Crossref] [Google Scholar]
18. Martín, J., del Mar Orta, M., Medina-Carrasco, S., Santos, J. L., Aparicio, I., & Alonso, E. (2019). Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Applied Clay Science, 171, 29-37. [Crossref] [Google Scholar]
19. Mehrani, M. J., Tashayoei, M. R., Ferdowsi, A., & Hashemi, H. (2016). Qualitative evaluation of antibiotics in WWTP and review of some antibiotics removal methods. International Academic Journal of Science and Engineering, 3(2), 11-22. [Google Scholar]
20. Milan, M., Pauletto, M., Patarnello, T., Bargelloni, L., Marin, M. G., & Matozzo, V. (2013). Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. Aquatic Toxicology, 126, 17-29. [Crossref] [Google Scholar]
21. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresource Technology, 160, 191-202. [Crossref] [Google Scholar]
22. Noor, S. A. M., Ahmad, A., Talib, I. A., & Rahman, M. Y. A. (2010). Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics, 16, 161-170. [Crossref] [Google Scholar]
23. Pérez-Marín, A. B., Zapata, V. M., Ortuno, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of Hazardous Materials, 139(1), 122-131. [Crossref] [Google Scholar]
24. Phasuphan, W., Praphairaksit, N., & Imyim, A. (2019). Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. Journal of Molecular Liquids, 294, 111554. [Crossref] [Google Scholar]
25. Puszkarewicz, A., Kaleta, J., & Papciak, D. (2017). Application of powdery activated carbons for removal ibuprofen from water. Journal of Ecological Engineering, 18(4), 169-177. [Crossref] [Google Scholar]
26. Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2018). Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies. International Journal of Environmental Science and Technology, 15, 513-524. [Crossref] [Google Scholar]
27. Shamsi, Z., Mohamadi, Z., Zamani, A., & Alizadeh, A. (2021). Magnetic adsorbent based on the electric arc furnace dust for the removal of methylene blue dye from aqueous solution. Environmental Progress & Sustainable Energy, 40(5), e13636. [Crossref] [Google Scholar]
28. Sinaga, G. S. T., Wismogroho, A. S., Fitroturokhmah, A., Kusumaningrum, R., Widayatno, W. B., Hadiko, G., & Amal, M. I. (2019). The pyrometallurgical recovery of zinc from electric arc furnace dust (EAFD) with active carbon. IOP Conference Series: Materials Science and Engineering, 578(1), 012068. [Crossref] [Google Scholar]
29. Singh, S. K., Vashistha, P., Chandra, R., & Rai, A. K. (2021). Study on leaching of electric arc furnace (EAF) slag for its sustainable applications as construction material. Process Safety and Environmental Protection, 148, 1315-1326. [Crossref] [Google Scholar]
30. Tarpani, R. R. Z., & Azapagic, A. (2018). Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). Journal of Environmental Management, 215, 258-272. [Crossref] [Google Scholar]
31. Thiebault, T. (2020). Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: state of the art and future perspectives. Critical Reviews in Environmental Science and Technology, 50(14), 1451-1514. [Crossref] [Google Scholar]
32. Tu, Y. J., You, C. F., & Chang, C. K. (2012). Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles. Journal of Hazardous Materials, 235, 116-122. [Crossref] [Google Scholar]
33. Van Doorslaer, X., Dewulf, J., Van Langenhove, H., & Demeestere, K. (2014). Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Science of the Total Environment, 500, 250-269. [Crossref] [Google Scholar]
34. Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma, 151(3-4), 68-76. [Crossref] [Google Scholar]
35. Wang, C. J., Li, Z., Jiang, W. T., Jean, J. S., & Liu, C. C. (2010). Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. Journal of Hazardous Materials, 183(1-3), 309-314. [Crossref] [Google Scholar]
36. Xing, X., Feng, J., Lv, G., Song, K., Mei, L., Liao, L., . . . & Xu, B. (2015). Adsorption mechanism of ciprofloxacin from water by synthesized birnessite. Advances in Materials Science and Engineering, 2015, 148423. [Crossref] [Google Scholar]
37. Yoosefian, M., Ahmadzadeh, S., Aghasi, M., & Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. Journal of Molecular Liquids, 225, 544-553. [Crossref] [Google Scholar]
38. Zaghouane-Boudiaf, H., Boutahala, M., Sahnoun, S., Tiar, C., & Gomri, F. (2014). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2, 4, 5-trichlorophenol. Applied Clay Science, 90, 81-87. [Crossref] [Google Scholar]
39. Zhang, C. L., Qiao, G. L., Zhao, F., & Wang, Y. (2011). Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. Journal of Molecular Liquids, 163(1), 53-56. [Crossref] [Google Scholar]
40. Zheng, C., Zheng, H., Hu, C., Wang, Y., Wang, Y., Zhao, C., . . . & Sun, Q. (2020). Structural design of magnetic biosorbents for the removal of ciprofloxacin from water. Bioresource Technology, 296, 122288. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb