1. Adityosulindro, S., Barthe, L., González-Labrada, K., Haza, U. J. J., Delmas, H., & Julcour, C. (2017). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrasonics Sonochemistry, 39, 889-896. [
Crossref]
2. Ahmad, A. A., Rahman, M. Y. A., Low, S. P., & Hamzah, H. (2011). Effect of LiBF44 salt concentration on the properties of plasticized Mg49-TiO2 based nanocomposite polymer electrolyte. ISRN Materials Science, 2011, 7. [
Crossref]
3. Almeida, M. M., Saczk, A. A., da Silva Felix, F., Penido, E. S., Santos, T. A. R., de Souza Teixeira, A., & Magalhães, F. (2023). Characterization of electric arc furnace dust and its application in photocatalytic reactions to degrade organic contaminants in synthetic and real samples. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114585. [
Crossref]
4. Alsheyab, M. A. (2013). SEM analysis on electron arc furnace dust (EAFD) and EAFD-asphalt mixture. Environment and Natural Resources Research, 3(4), 147-154. [
Crossref]
5. Avcı, A., Inci, I., & Baylan, N. (2019). A comparative adsorption study with various adsorbents for the removal of ciprofloxacin hydrochloride from water. Water, Air, & Soil Pollution, 230, 250. [
Crossref]
6. da Silva Magalhães, M., Faleschini, F., Pellegrino, C., & Brunelli, K. (2017). Effects of electric arc furnace dust (EAFD) addition on setting and strength evolutions of cement pastes and mortars. European Journal of Environmental and Civil Engineering, 21(13), 1-13. [
Crossref]
7. Ferreira, F. B., Flores, B. D., Osório, E., & Vilela, A. C. F. (2018). Carbothermic reduction of electric arc furnace dust via thermogravimetry. REM-International Engineering Journal, 71(3), 411-418. [
Crossref]
8. Gamboa, P. A., Ramírez-García, J. J., Solache-Ríos, M., Díaz-Nava, C., & Gallegos-Pérez, J. L. (2016). Comparison of different modified aluminosilicate networks for the removal of diclofenac. Desalination and Water Treatment, 57(55), 26401-26413. [
Crossref]
9. Genç, N., Can Dogan, E., & Yurtsever, M. (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water Science and Technology, 68(4), 848-855. [
Crossref]
10. Ghemit, R., Makhloufi, A., Djebri, N., Flilissa, A., Zerroual, L., & Boutahala, M. (2019). Adsorptive removal of diclofenac and ibuprofen from aqueous solution by organobentonites: study in single and binary systems. Groundwater for Sustainable Development, 8, 520-529. [
Crossref]
11. Giannakis, S., Papoutsakis, S., Darakas, E., Escalas-Cañellas, A., Pétrier, C., & Pulgarin, C. (2015). Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater. Ultrasonics Sonochemistry, 22, 515-526. [
Crossref]
12. Jalil, M. E. R., Baschini, M., & Sapag, K. (2015). Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 114, 69-76. [
Crossref]
13. Keshvardoostchokami, M., Babaei, S., Piri, F., & Zamani, A. (2017). Nitrate removal from aqueous solutions by ZnO nanoparticles and chitosan-polystyrene-Zn nanocomposite: kinetic, isotherm, batch and fixed-bed studies. International Journal of Biological Macromolecules, 101, 922-930. [
Crossref]
14. Khazri, H., Ghorbel-Abid, I., Kalfat, R., & Trabelsi-Ayadi, M. (2017). Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Applied Water Science, 7(6), 3031-3040. [
Crossref]
15. Lancheros, J. C., Madera-Parra, C. A., Caselles-Osorio, A., Torres-López, W. A., & Vargas-Ramírez, X. M. (2019). Ibuprofen and Naproxen removal from domestic wastewater using a horizontal subsurface flow constructed wetland coupled to ozonation. Ecological Engineering, 135, 89-97. [
Crossref]
16. Li, S., Zhang, X., & Huang, Y. (2017). Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. Journal of Hazardous Materials, 321, 711-719. [
Crossref]
17. Liang, C., Zhang, X., Feng, P., Chai, H., & Huang, Y. (2018). ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chemical Engineering Journal, 344, 95-104. [
Crossref]
18. Martín, J., del Mar Orta, M., Medina-Carrasco, S., Santos, J. L., Aparicio, I., & Alonso, E. (2019). Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media. Applied Clay Science, 171, 29-37. [
Crossref]
19. Mehrani, M. J., Tashayoei, M. R., Ferdowsi, A., & Hashemi, H. (2016). Qualitative evaluation of antibiotics in WWTP and review of some antibiotics removal methods. International Academic Journal of Science and Engineering, 3(2), 11-22.
20. Milan, M., Pauletto, M., Patarnello, T., Bargelloni, L., Marin, M. G., & Matozzo, V. (2013). Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. Aquatic Toxicology, 126, 17-29. [
Crossref]
21. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresource Technology, 160, 191-202. [
Crossref]
22. Noor, S. A. M., Ahmad, A., Talib, I. A., & Rahman, M. Y. A. (2010). Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics, 16, 161-170. [
Crossref]
23. Pérez-Marín, A. B., Zapata, V. M., Ortuno, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of Hazardous Materials, 139(1), 122-131. [
Crossref]
24. Phasuphan, W., Praphairaksit, N., & Imyim, A. (2019). Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. Journal of Molecular Liquids, 294, 111554. [
Crossref]
25. Puszkarewicz, A., Kaleta, J., & Papciak, D. (2017). Application of powdery activated carbons for removal ibuprofen from water. Journal of Ecological Engineering, 18(4), 169-177. [
Crossref]
26. Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2018). Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies. International Journal of Environmental Science and Technology, 15, 513-524. [
Crossref]
27. Shamsi, Z., Mohamadi, Z., Zamani, A., & Alizadeh, A. (2021). Magnetic adsorbent based on the electric arc furnace dust for the removal of methylene blue dye from aqueous solution. Environmental Progress & Sustainable Energy, 40(5), e13636. [
Crossref]
28. Sinaga, G. S. T., Wismogroho, A. S., Fitroturokhmah, A., Kusumaningrum, R., Widayatno, W. B., Hadiko, G., & Amal, M. I. (2019). The pyrometallurgical recovery of zinc from electric arc furnace dust (EAFD) with active carbon. IOP Conference Series: Materials Science and Engineering, 578(1), 012068. [
Crossref]
29. Singh, S. K., Vashistha, P., Chandra, R., & Rai, A. K. (2021). Study on leaching of electric arc furnace (EAF) slag for its sustainable applications as construction material. Process Safety and Environmental Protection, 148, 1315-1326. [
Crossref]
30. Tarpani, R. R. Z., & Azapagic, A. (2018). Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). Journal of Environmental Management, 215, 258-272. [
Crossref]
31. Thiebault, T. (2020). Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: state of the art and future perspectives. Critical Reviews in Environmental Science and Technology, 50(14), 1451-1514. [
Crossref]
32. Tu, Y. J., You, C. F., & Chang, C. K. (2012). Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles. Journal of Hazardous Materials, 235, 116-122. [
Crossref]
33. Van Doorslaer, X., Dewulf, J., Van Langenhove, H., & Demeestere, K. (2014). Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Science of the Total Environment, 500, 250-269. [
Crossref]
34. Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma, 151(3-4), 68-76. [
Crossref]
35. Wang, C. J., Li, Z., Jiang, W. T., Jean, J. S., & Liu, C. C. (2010). Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. Journal of Hazardous Materials, 183(1-3), 309-314. [
Crossref]
36. Xing, X., Feng, J., Lv, G., Song, K., Mei, L., Liao, L., . . . & Xu, B. (2015). Adsorption mechanism of ciprofloxacin from water by synthesized birnessite. Advances in Materials Science and Engineering, 2015, 148423. [
Crossref]
37. Yoosefian, M., Ahmadzadeh, S., Aghasi, M., & Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. Journal of Molecular Liquids, 225, 544-553. [
Crossref]
38. Zaghouane-Boudiaf, H., Boutahala, M., Sahnoun, S., Tiar, C., & Gomri, F. (2014). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2, 4, 5-trichlorophenol. Applied Clay Science, 90, 81-87. [
Crossref]
39. Zhang, C. L., Qiao, G. L., Zhao, F., & Wang, Y. (2011). Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. Journal of Molecular Liquids, 163(1), 53-56. [
Crossref]
40. Zheng, C., Zheng, H., Hu, C., Wang, Y., Wang, Y., Zhao, C., . . . & Sun, Q. (2020). Structural design of magnetic biosorbents for the removal of ciprofloxacin from water. Bioresource Technology, 296, 122288. [
Crossref]