Volume 12, Issue 1 (1-2026)                   jhehp 2026, 12(1): 25-35 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saei M, Vakili Saatloo N, Shavali-Gilani P, Akbariyeh N, Cheraghian F, Haji L, et al . A Review of the Health Impacts of Solanine: The Toxic Alkaloid Found in Potatoes. jhehp 2026; 12 (1) :25-35
URL: http://jhehp.zums.ac.ir/article-1-689-en.html
1- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
2- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran.
3- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
4- Department of Nutrition and Food Hygiene, School of Health, Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran.
Abstract:   (1446 Views)
Solanine, a steroidal glycoside found in potatoes, serves as a natural defense mechanism for the plant, exhibiting fungicidal and pesticidal properties that protect it from phytopathogenic fungi. This compound can be present in various parts of the plant, including the leaves, fruits, and tubers. However, control measures on solanum glycoside toxins are based on careful selection and seed potato varieties, and attention to handling and processing. In order to reduce the risks and ensure sustainable storage, potatoes should be stored in cool, dark areas. Solanine poisoning is primarily manifested by gastrointestinal and neurological disorders and may cause severe nervous and exanthematous syndrome. This review provides a comprehensive survey on glycoalkaloid distribution in potatoes and its associated factors, its impact on flavor, the neurotoxic effects of solanine on humans, the various analytical methods used for its evaluation, and strategies to control its formation.
Full-Text [PDF 462 kb]   (125 Downloads)    
Type of Study: Review Article | Subject: Food Safety and Hygiene
Received: 2025/10/18 | Accepted: 2025/12/20 | Published: 2026/01/1

References
1. Alamar, M. C., Tosetti, R., Landahl, S., Bermejo, A., & Terry, L. A. (2017). Assuring potato tuber quality during storage: A future perspective. Frontiers in Plant Science, 8, 2034. [Crossref] [Google Scholar]
2. Aziz, A., Randhawa, M. A., Butt, M. S., Asghar, A., Yasin, M., & Shibamoto, T. (2012). Glycoalkaloids (α-Chaconine and α-Solanine) contents of selected pakistani potato cultivar and their dietary intake assessment. Journal of Food Science, 77(3), 58-61. [Crossref] [Google Scholar]
3. Babazadeh, S., Ahmadi Moghaddam, P., Sabatyan, A., & Sharifian, F. (2016). Classification of potato tubers based on solanine toxicant using laser-induced light backscattering imaging. Computers and Electronics in Agriculture, 129, 1-8. [Crossref] [Google Scholar]
4. Babazadeh, S., Ahmadi Moghaddam, P., Sabatyan, A., & Sharifian, F. (2020). Comparison of the laser backscattering and digital imaging techniques on detection of α-solanine in potatoes. Journal of Agricultural Machinery, 10(1), 49-58. [Google Scholar]
5. Baur, S., Frank, O., Hausladen, H., Hückelhoven, R., Hofmann, T., Eisenreich, W., & Dawid, C. (2021). Biosynthesis of α-solanine and α-chaconine in potato leaves (Solanum tuberosum L.)-A 13CO2 study. Food Chemistry, 365, 130461. [Crossref] [Google Scholar]
6. Benkeblia, N. (2020). Potato Glycoalkaloids: Occurrence, biological activities and extraction for biovalorisation-a review. International Journal of Food Science & Technology, 55(6), 2305-2313. [Crossref] [Google Scholar]
7. Çavdar, H., Senturk, M., Guney, M., Durdağı, S., Kayık, G., Supuran, C. T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: Kinetic and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 429-437. [Crossref] [Google Scholar]
8. Chen, X., Ding, Y., & Kan, J. (2018). Changes in the content and influence factors of α-solanine in potato during storage. Emirates Journal of Food and Agriculture, 30(1), 10-16. [Crossref] [Google Scholar]
9. del Mar Martínez-Prada, M., Curtin, Sh. J., & Gutiérrez-González, J. J. (2021). Potato improvement through genetic engineering. GM Crops & Food, 12(1), 479-496. [Crossref] [Google Scholar]
10. Deng, Y., He, M., Feng, F., Feng, X., Zhang, Y., & Zhang, F. (2021). The distribution and changes of glycoalkaloids in potato tubers under different storage time based on MALDI-TOF mass spectrometry imaging. Talanta, 221, 121453. [Crossref] [Google Scholar]
11. Deußer, H., Guignard, C., Hoffmann, L., & Evers, D. (2012). Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chemistry, 135(4), 2814-2824. [Crossref] [Google Scholar]
12. Dokhani, Sh., Keramat, J., & Roofigari Haghighat, S. (2003). Total glycoalkaloids and & Alpha-Solanine changes in potato tubers during storage and heat processing. JWSS-Journal of Water and Soil Science, 7(2), 171-183. [Google Scholar]
13. Dusza, M., Sporysz, M., Sokołowska, D., & Grotkiewicz, K. (2020). Impact of post-harvest processing and storing of potato tubers on toxic compounds accumulation. Agricultural Engineering, 24(2), 39-44. [Crossref] [Google Scholar]
14. El-Said, S. M. (2013). Removal of a pharmacological undesirable compounds from potato tuber. Research and Review in Bioscience, 7(4), 129-135. [Google Scholar]
15. Esposito, F., Fogliano, V., Cardi, T., Carputo, D., & Filippone, E. (2002). Glycoalkaloid content and chemical composition of potatoes improved with nonconventional breeding approaches. Journal of Agricultural and Food Chemistry, 50(6), 1553-1561. [Crossref] [Google Scholar]
16. Fragoyiannis, D. A., McKinlay, R. G., & D'Mello, J. P. F. (2001). Interactions of aphid herbivory and nitrogen availability on the total foliar glycoalkaloid content of potato plants. Journal of Chemical Ecology, 27, 1749-1762. [Crossref] [Google Scholar]
17. Friedman, M. (2006). Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. Journal of Agricultural and Food Chemistry, 54(23), 8655-8681. [Crossref] [Google Scholar]
18. Friedman, M., & McDonald, G. M. (1999). Postharvest changes in glycoalkaloid content of potatoes. In L. S. Jackson, M. G. Knize, & J. N. Morgan, Impact of processing on food safety (pp. 121-143). Springer. [Crossref] [Google Scholar]
19. Friedman, M., Roitman, J. N., & Kozukue, N. (2003). Glycoalkaloid and calystegine contents of eight potato cultivars. Journal of Agricultural and Food Chemistry, 51(10), 2964-2973. [Crossref] [Google Scholar]
20. Frydecka-Mazurczyk, A., & Zgórska, K. (2001). The influence of genotype on the effects of impact damage and light exposure on the accumulation of glycoalkaloids in potato tubers. Roczniki Panstwowego Zakladu Higieny, 52(2), 139-144. [Google Scholar]
21. Garcia, M. E., Borioni, J. L., Cavallaro, V., Puiatti, M., Pierini, A. B., Murray, A. P., & Peñéñory, A. B. (2015). Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Steroids, 104, 95-110. [Crossref] [Google Scholar]
22. Ginzberg, I., Tokuhisa, J. G., & Veilleux, R. E. (2009). Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research, 52, 1-15. [Crossref] [Google Scholar]
23. Gouhar, S. A., Abo‐elfadl, M. T., Gamal‐Eldeen, A. M., & El‐Daly, S. M. (2022). Involvement of miRNAs in response to oxidative stress induced by the steroidal glycoalkaloid α‐solanine in hepatocellular carcinoma cells. Environmental Toxicology, 37(2), 212-223. [Crossref] [Google Scholar]
24. Haase, N. (2010). Glycoalkaloid concentration in potato tubers related to storage and consumer offering. Potato Research, 53(4), 297-307. [Crossref] [Google Scholar]
25. Hodgson, E. (2012). Chapter fourteen-toxins and venoms. In V. K. Prajapati, Progress in molecular biology and translational science (pp. 373-415). Elsevier. [Crossref]
26. Idowu, A. O., Saliu, A. O., Itakorode, B. O., Fakorede, C. N., & Arise, R. O. (2022). Toxicological effects on selected tissues of rats fed glycoalkaloid-rich and light-exposed solanum tuberosum. Journal of Nutrition and Food Security, 7(4), 512-524. [Crossref] [Google Scholar]
27. Ji, X., Rivers, L., Zielinski, Z., Xu, M., MacDougall, E., Stephen, J., . . . & Zhang, J. (2012). Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 133(4), 1177-1187. [Crossref] [Google Scholar]
28. Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51-66. [Crossref] [Google Scholar]
29. Kipkoech, G. K. (2018). Determination of glycoalkaloids, phenolic acids and protease inhibitors in selected cultivated potato (solanum tuberosum l.) varieties [Doctoral dissertation, University of Nairobi]. UoN Digital Repository. https://share.google/gGWdTHd0rm9ZcDkPB
30. Kirui, K. G., Misra, A. K., Olanya, O. M., Friedman, M., El-Bedewy, R., & Ewell, P. T. (2009). Glycoalkaloid content of some superior potato clones and commercial varieties. Archives of Phytopathology and Plant Protection, 42(5), 453-463. [Crossref] [Google Scholar]
31. Koffi, G. Y., Remaud-Siméon, M., Dué, A. E., & Combes, D. (2017). Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery. Food Chemistry, 220, 257-265. [Crossref] [Google Scholar]
32. Kotsonis, F. N., & Burdock, G. A. (2008). Food toxicology. In C. D. Klaassen, Casarett and Doull’s Toxicology: The Basic Science of Poisons (pp. 1191-1236). McGraw-Hill.
33. Kozukue, N., & Mizuno, S. (1990). Effects of light exposure and storage temperature on greening and glycoalkaloid content in potato tubers. Journal of the Japanese Society for Horticultural Science, 59(3), 673-677. [Crossref] [Google Scholar]
34. Lafta, A. M., & Lorenzen, J. H. (2000). Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. Journal of the American Society for Horticultural Science, 125(5), 563-566. [Crossref] [Google Scholar]
35. Li, M., Tian, S. L., Xie, M. H., Li, S. Q., Feng, H. D., & Liu, G. (2010). Effect of different color polyethylene food packaging bags on greening and steriodal glycoalkaloids content of potatoes. Food Science, 31(4), 264-267.
36. Liu, H., Roasa, J., Mats, L., Zhu, H., & Shao, S. (2020). Effect of acid on glycoalkaloids and acrylamide in French fries. Food Additives & Contaminants: Part A, 37(6), 938-945. [Crossref] [Google Scholar]
37. Liu, W., Zhang, N., Li, B., Fan, S., Zhao, R., Li, L. P., . . . & Zhao, Y. (2014). Determination of α-chaconine and α-solanine in commercial potato crisps by QuEChERS extraction and UPLC-MS/MS. Chemical Papers, 68(11), 1498-1504. [Crossref] [Google Scholar]
38. Loveniers, P. J. (2019). Opportunities and problems concerning potato production and quality in lam dong, vietnam. Ghent University. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=p9Awe5QAAAAJ&citation_for_view=p9Awe5QAAAAJ:u5HHmVD_uO8C
39. Love, S. L., Baker, T. P., Thompson‐Johns, A., & Werner, B. K. (1996). Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breeding, 115(2), 119-122. [Crossref] [Google Scholar]
40. Lu, B., Sun, J., Yang, N., & Hang, Y. (2019). Fluorescence hyperspectral image technique coupled with HSI method to predict solanine content of potatoes. Journal of Food Processing and Preservation, 43(11), e14198. [Crossref] [Google Scholar]
41. Machado, R. M. D., Toledo, M. C. F., & Garcia, L. C. (2007). Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control, 18(5), 503-508. [Crossref] [Google Scholar]
42. Mäder, J., Rawel, H., & Kroh, L. W. (2009). Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing. Journal of Agricultural and Food Chemistry, 57(14), 6292-6297. [Crossref] [Google Scholar]
43. Manrique-Moreno, M., Londoño-Londoño, J., Jemioła-Rzemińska, M., Strzałka, K., Villena, F., Avello, M., & Suwalsky, M. (2014). Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(1), 266-277. [Crossref] [Google Scholar]
44. Mekapogu, M., Sohn, H., Kim, S., Lee, Y., Park, H., Jin, Y., . . . & Kim, Y. (2016). Effect of light quality on the expression of glycoalkaloid biosynthetic genes contributing to steroidal glycoalkaloid accumulation in potato. American Journal of Potato Research, 93, 264-277. [Crossref] [Google Scholar]
45. Muñoa, L., Chacaltana, C., Sosa, P., Gastelo, M., Zum Felde, T., & Burgos, G. (2022). Effect of environment and peeling in the glycoalkaloid concentration of disease-resistant and heat-tolerant potato clones. Journal of Agriculture and Food Research, 7, 100269. [Crossref] [Google Scholar]
46. Mystkowska, I. (2019). Reduction of glycoalkaloids in potato under the influence of biostimulators. Applied Ecology & Environmental Research, 17(2), 3567-3574. [Crossref] [Google Scholar]
47. Najm, A. A., Haj Seyed Hadi, M. R., Fazeli, F., Darzi, M. T., & Rahi, A. (2012). Effect of integrated management of nitrogen fertilizer and cattle manure on the leaf chlorophyll, yield, and tuber glycoalkaloids of agria potato. Communications in Soil Science and Plant Analysis, 43(6), 912-923. [Crossref] [Google Scholar]
48. Nie, X., Li, C., Zhang, G., Shao, Z., Wang, X., Shi, H., & Guo, H. (2019). Light exposure and wounding: Synergistic effects on steroidal glycoalkaloid accumulation in potato tubers during storage. International Journal of Food Science & Technology, 54(10), 2939-2948. [Crossref] [Google Scholar]
49. Nie, X., Zhang, G., Lv, Sh., & Guo, H. (2018). Steroidal glycoalkaloids in potato foods as affected by cooking methods. International Journal of Food Properties, 21(1), 1875-1887. [Crossref] [Google Scholar]
50. Nielsen, S. D., Schmidt, J. M., Kristiansen, G. H., Dalsgaard, T. K., & Larsen, L. B. (2020). Liquid chromatography mass spectrometry quantification of α-solanine, α-chaconine, and solanidine in potato protein isolates. Foods, 9(4), 416. [Crossref] [Google Scholar]
51. Okamoto, H., Ducreux, L. J. M., Allwood, J. W., Hedley, P. E., Wright, A., Gururajan, V., . . . & Taylor, M. A. (2020). Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. Frontiers in Plant Science, 11, 753. [Crossref] [Google Scholar]
52. Omayio, D. G., ABONG, G. O., & Okoth, M. W. (2016). A review of occurrence of glycoalkaloids in potato and potato products. Current Research in Nutrition and Food Science, 4(3), 195-202. [Crossref] [Google Scholar]
53. Popova, I., Sell, B., Pillai, S. S., Kuhl, J., & Dandurand, L. M. (2022). High-performance liquid chromatography-mass spectrometry analysis of glycoalkaloids from underexploited Solanum species and their acetylcholinesterase inhibition activity. Plants, 11(3), 269. [Crossref] [Google Scholar]
54. Roepcke, C. B. S. (2011). Development of acetylcholinesterase biosensors for neurotoxins detection in foods and the environment [Doctoral Thesis, Universität Stuttgart]. https://elib.uni-stuttgart.de/server/api/core/bitstreams/2ecaf9be-85ff-44e1-81fd-4fceb2f4d036/content [Google Scholar]
55. Romanucci, V., Di Fabio, G., Di Marino, C., Davinelli, S., Scapagnini, G., & Zarrelli, A. (2018). Evaluation of new strategies to reduce the total content of α-solanine and α-chaconine in potatoes. Phytochemistry Letters, 23, 116-119. [Crossref] [Google Scholar]
56. Rytel, E. (2012). Changes in glycoalkaloid and nitrate content in potatoes during dehydrated dice processing. Food Control, 25(1), 349-354. [Crossref] [Google Scholar]
57. Rytel, E., Tajner-Czopek, A., Aniołowska, M., & Hamouz, K. (2013). The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chemistry, 141(3), 2495-2500. [Crossref] [Google Scholar]
58. Sadighara, P., Godarzi, S., Bahmani, M., & Asadi-Samani, M. (2016). Antioxidant activity and properties of walnut brown seed coat extract. Journal of Global Pharma Technology, 11(8), 26-30. [Google Scholar]
59. Sánchez del Pulgar, J., Lucarini, M., Aguzzi, A., Gabrielli, P., Parisi, B., Pacifico, D., . . . & Lombardi-Boccia, G. (2021). Glycoalkaloid content in Italian potato breeding clones improved for resistance against potato tuber moth (Phthorimaea operculella Zeller). Potato Research, 64, 229-240. [Crossref] [Google Scholar]
60. Satarug, S. (2018). Dietary cadmium intake and its effects on kidneys. Toxics, 6(1), 15. [Crossref] [Google Scholar]
61. Shepherd, L. V. T., Hackett, C. A., Alexander, C. J., McNicol, J. W., Sungurtas, J. A., McRae, D., . . . & Davies, H. V. (2016). Impact of light-exposure on the metabolite balance of transgenic potato tubers with modified glycoalkaloid biosynthesis. Food Chemistry, 200, 263-273. [Crossref] [Google Scholar]
62. Skarkova, J., Ostry, V., & Ruprich, J. (2008). Instrumental HPTLC determination of α-solanine and α-chaconine in peeled potato tubers. JPC-Journal of Planar Chromatography-Modern TLC, 21, 113-117. [Crossref] [Google Scholar]
63. Smith, S. W., Giesbrecht, E., Thompson, M., Nelson, L. S., & Hoffman, R. S. (2008). Solanaceous steroidal glycoalkaloids and poisoning by Solanum torvum, the normally edible susumber berry. Toxicon, 52(6), 667-676. [Crossref] [Google Scholar]
64. Song, F., Li, C., Zhang, N., He, X., Yang, H., Yan, Z., . . . & Huang, K. (2023). A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biology and Technology, 196, 112176. [Crossref] [Google Scholar]
65. Sotelo, A., & Serrano, B. (2000). High-performance liquid chromatographic determination of the glycoalkaloids α-solanine and α-chaconine in 12 commercial varieties of Mexican potato. Journal of Agricultural and Food Chemistry, 48(6), 2472-2475. [Crossref] [Google Scholar]
66. Trejo-Escobar, D., Valencia-Flórez, L., Mejía-España, D., & Hurtado, A. M. (2019). Influence of fertilization on glycoalkaloid content in four potato genotypes (Solanum tuberosum). 7th International Engineering, Sciences and Technology Conference (IESTEC), 36-39. [Crossref] [Google Scholar]
67. Uluwaduge, D. I. (2018). Glycoalkaloids, bitter tasting toxicants in potatoes: A review. International Journal of Food Science and Nutrition, 3(4), 188-193. [Google Scholar]
68. Urban, J., Hamouz, K., Jaromír, L., Pulkrábek, J., & Pazderu, K. (2018). Effect of genotype, flesh colour and environment on the glycoalkaloid content in potato tubers from integrated agriculture. Plant Soil and Environment, 64, 186-191. [Crossref] [Google Scholar]
69. Valcarcel, J., Reilly, K., Gaffney, M., & O'Brien, N. (2014). Effect of genotype and environment on the glycoalkaloid content of rare, heritage, and commercial potato varieties. Journal of Food Science, 79(5), T1039-T1048. [Crossref] [Google Scholar]
70. Vorne, V., Ojanperä, K., De Temmerman, L., Bindi, M., Högy, P., Jones, M. B., . . . & Persson, K. (2002). Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment ‘CHIP-project’. European Journal of Agronomy, 17(4), 369-381. [Crossref] [Google Scholar]
71. Wen, G., Cambouris, A. N., Bertrand, A., Ziadi, N., Li, H., & Khelifi, M. (2019). Nitrogen fertilization effects on the leaf chemical concentrations in Russet Burbank potato. Field Crops Research, 232, 40-48. [Crossref] [Google Scholar]
72. Yanlin, J., Wang-tian, W., Di, W., Jinwen, Z., Wei, W., Ying, L., & Feifei, Z. (2010). Inducing effects of different light qualities on steroidal glycoalkaloids contents in potato tuber. Jiangsu Journal of Agricultural Sciences, 26(1), 40-45. [Google Scholar]
73. Zhang, L., Li, M., Zhang, G., Wu, L., Cai, D., & Wu, Z. (2018). Inhibiting sprouting and decreasing α-solanine amount of stored potatoes using hydrophobic nanosilica. ACS Sustainable Chemistry & Engineering, 6(8), 10517-10525. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2026 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb