1. Ateş, D. A., & Turgay, Ö. (2003). Antimicrobial activities of various medicinal and commercial plant extracts. Turkish Journal of Biology, 27(3), 157-162. [
Google Scholar]
2. Buonocore, G. G., Del Nobile, M. A., Panizza, A., Bove, S., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68(4), 1365-1370. [
Crossref] [
Google Scholar]
3. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. [
Crossref] [
Google Scholar]
4. Ebrahimi, A., Khayami, M., & Nejati, V. (2012). Comparison of antimicrobial effect of different parts of Quercus persica against E. coli O157:H7. Ofoghe-Danesh, 18. [
Google Scholar]
5. Ghaderi, G. M., Sadeghi, M. A., Alami, M., Azizi, M. H., & Ghorbani, M. (2012). Study on antioxidant activities of phenolic extracts from fruit of a variety of Iranian acorn (Q. castaneifolia var castaneifolia). Journal of Food Science and Technology, 9(37). [
Google Scholar]
6. Gupta, C., Garg, A. P., Uniyal, R. C., & Kumari, A. (2008). Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. African Journal of Microbiology Research, 2(9), 247-251. [
Google Scholar]
7. Hashim, S. T., Hamza, I. S., & Hassan, M. A. (2013). Identification of quantative chemical compounds of ethanolic extracts of Quercus infectoria and studies its inhibitory effect in some bacteria. Indian Journal of Research, 2(8), 125-128.
8. Masoudi Nejad, M. R., & Rezazade Azary, M. (2003). Comparison of four methods of tannin extraction from the fruits of oak species in Iran. Quercus, 2, 3. [
Google Scholar]
9. Morales, D. (2021). Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends in Food Science & Technology, 109, 116-125. [
Crossref] [
Google Scholar]
10. Özünlü, O., Ergezer, H., & Gökçe, R. (2018). Improving physicochemical, antioxidative and sensory quality of raw chicken meat by using acorn extracts. Lwt, 98, 477-484. [
Crossref] [
Google Scholar]
11. Ordoñez, R., Atarés, L., & Chiralt, A. (2022). Properties of PLA films with cinnamic acid: Effect of the processing method. Food and Bioproducts Processing, 133, 25-33. [
Crossref] [
Google Scholar]
12. Pirbalouti, A. G., Mahdad, E., & Craker, L. (2013). Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry, 141(3), 2440-2449. [
Crossref] [
Google Scholar]
13. Rizki, I. N., Inoue, T., Chuaicham, C., Shenoy, S., Srikhaow, A., Sekar, K., & Sasaki, K. (2023). Fabrication of reduced ag nanoparticle using crude extract of cinnamon decorated on ZnO as a photocatalyst for hexavalent chromium reduction. Catalysts, 13(2), 265. [
Crossref] [
Google Scholar]
14. Rezaeigolesani, M., Khanjari, A., Misaghi, A., Akhondzadeh Basti, A., Abdolkhani, A., & Fayazfar, S. (2018). Development of biodegradable antibacterial poly-lactic acid based packaging films with bioactive compounds. Iranian Journal of Wood and Paper Industries, 9(2), 153-162. [
Google Scholar]
15. Sabahi, S., Abbasi, A., & Mortazavi, S. A. (2022). Characterization of cinnamon essential oil and its application in Malva sylvestris seed mucilage edible coating to the enhancement of the microbiological, physicochemical and sensory properties of lamb meat during storage. Journal of Applied Microbiology, 133(2), 488-502. [
Crossref] [
Google Scholar]
16. Sánchez-Gutiérrez, M., Gómez-García, R., Carrasco, E., Bascón-Villegas, I., Rodríguez, A., & Pintado, M. (2022). Quercus ilex leaf as a functional ingredient: Polyphenolic profile and antioxidant activity throughout simulated gastrointestinal digestion and antimicrobial activity. Journal of Functional Foods, 91, 105025. [
Crossref] [
Google Scholar]
17. Shin, H., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). Preparation and characterization of ductile PLA/PEG blend films for eco-friendly flexible packaging application. Food Packaging and Shelf Life, 34, 100966. [
Crossref] [
Google Scholar]
18. Shavisi, N., Khanjari, A., Basti, A. A., Misaghi, A., & Shahbazi, Y. (2017). Effect of PLA films containing propolis ethanolic extract, cellulose nanoparticle and Ziziphora clinopodioides essential oil on chemical, microbial and sensory properties of minced beef. Meat Science, 124, 95-104. [
Crossref] [
Google Scholar]
19. Shariatifar, N., Fathabad, A. E., Khaniki, G. J., & Nasrabadi, H. G. (2014). Evaluation of the antibacterial activity of essential oil and aqueous and ethanolic extracts of Quercus infectoria leaves on food-borne pathogenic bacteria. International Journal of Pharma Sciences and Research, 5(10), 709-713. [
Google Scholar]
20. Sheerzad, S., Khorrami, R., Khanjari, A., Gandomi, H., Basti, A. A., & Khansavar, F. (2024). Improving chicken meat shelf-life: Coating with whey protein isolate, nanochitosan, bacterial nanocellulose, and cinnamon essential oil. Lwt, 115912. [
Crossref] [
Google Scholar]
21. Tayel, A. A., El-Sedfy, M. A., Ibrahim, A. I., & Moussa, S. H. (2018). Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination. Revista Argentina de Microbiologia, 50(4), 391-397. [
Crossref] [
Google Scholar]
22. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science & Technology, 10(3), 77-86. [
Crossref] [
Google Scholar]
23. Voravuthikunchai, S. P., & Suwalak, S. (2008). Antibacterial activities of semipurified fractions of Quercus infectoria against enterohemorrhagic Escherichia coli O157:H7 and its verocytotoxin production. Journal of Food Protection, 71(6), 1223-1227. [
Crossref] [
Google Scholar]
24. Zhou, D., Liu, Z. H., Wang, D. M., Li, D. W., Yang, L. N., & Wang, W. (2019). Chemical composition, antibacterial activity and related mechanism of valonia and shell from Quercus variabilis Blume (Fagaceae) against Salmonella paratyphi and Staphylococcus aureus. BMC Complementary and Alternative Medicine, 19, 1-12. [
Crossref] [
Google Scholar]