XML Print


1- Department of Animal Science, Faculty of Agriculture, Rasht Branch, Islamic Azad University, Rasht, Iran.
Abstract:   (22 Views)
Background: This study investigated the effects of amaranth feeding on performance, carcass characteristics, biochemical parameters, blood antioxidant status, immunity, fatty acid profile, and sensory traits of broiler meat.
Methods: After analyzing the nutrient composition of amaranth, experiments were conducted using 150 Ross 308 broilers in a completely randomized design with 3 treatments (0, 1, and 2% raw amaranth) and five replications of 10 birds each.
Results: Results showed that broilers fed 1% or 2% amaranth exhibited an improved feed conversion ratio and increased body weight (p < 0.05). Amaranth feeding also decreased (p < 0.01) blood glucose, cholesterol, low-density lipoprotein, atherogenic index, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde. However, it significantly increased high-density lipoprotein, uric acid, albumin, total protein, phosphorus, iron, calcium, and total antioxidant capacity (p < 0.01).
Conclusion: Supplementation with low levels of amaranth can be used as a dietary enrichment for broiler chickens without negative effects on overall production performance or carcass traits. Improvements were observed in health-related indicators, including blood lipid and antioxidant profiles, as well as the sensory quality of broiler meat. Since broiler meat is widely consumed, this research suggests a potential benefit for human health.
     
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/05/21 | Accepted: 2025/08/30

References
1. Alizadeh-Ghamsari, A. H., Hosseini, S. A., Soleymani, M. R., & Nahavandi, R. (2021). Performance, intestinal histomorphology, and blood variables of broilers fed amaranth grain in pellet diet. Tropical Animal Science Journal, 44(1), 71-78. [Crossref]
2. Amirdahri, S., Janmohammadi, H., Taghizadeh, A., Olyayee, M., Hosseintabar-Ghasemabad, B., Seidavi, A., & Vlčková, R. (2023). Dietary leucine deficiency alters performance, body composition, intestine microbiota, and immune response of female Cobb broilers. Animal Production Science, 63(17), 1750-1758. [Crossref]
3. Attia, Y. A., Al-Harthi, M. A., Al-Sagan, A. A., Alqurashi, A. D., Korish, M. A., Abdulsalam, N. M., . . . & Bovera, F. (2022). Dietary supplementation with different ω-6 to ω-3 fatty acid ratios affects the sustainability of performance, egg quality, fatty acid profile, immunity and egg health indices of laying hens. Agriculture, 12(10), 1712. [Crossref]
4. Azri, A., Aydi, S. S., Aydi, S., Debouba, M., Bouajila, J., Cerny, M., . . . & Merah, O. (2025). Nutritional and bioactive lipid composition of Amaranthus seeds grown in varied agro-climatic conditions in France. Agronomy, 15(3), 672. [Crossref]
5. Bejosano, F. P., & Corke, H. (1998). Protein quality evaluation of Amaranthus whole meal flours and protein concentrates. Journal of the Science of Food and Agriculture, 76(1), 100-106. [Crossref]
6. Connor, J. K., Gartner, R. J. W., Runge, B. M., & Amos, R. N. (1980). Amaranthus edulis: An ancient food source re-examined. Australian Journal of Experimental Agriculture and Animal Husbandry, 20(103), 156-161. [Crossref]
7. FAO. (2023). Amaranth production statistics.
8. Gebeş, E. S., Yalçın, S., Ramay, M. S., Ünal, A., & Filikçi, K. (2024). Suitability of raw and heat-treated Amaranthus spinosus in broiler diets: Effects on growth performance, meat antioxidant capacity, haemato-biochemical parameters, intestinal histomorphometry, and cecal volatile fatty acid profile. Tropical Animal Health and Production, 56(7), 238-242. [Crossref]
9. Ghane-Khoshkebijari, F., Seidavi, A., & Bouyeh, M. (2024). The impact of In Ovo injection of organic manganese on broiler breeder hen egg hatchability and progeny broilers productivity. Journal of Human Environment and Health Promotion, 10(4), 229-237. [Crossref]
10. Güneş, F. E. (2013). Medical use of squalene as a natural antioxidant. Journal of Marmara University Institute of Health Sciences, 3(4), 220-228.
11. Hood, R. L. (1998). Tocotrienols in metabolism. Phytochemicals: A New Paradigm.
12. Hosseintabar-Ghasemabad, B., Di Rosa, A. R., Janmohammadi, H., Slozhenkina, M. I., Gorlov, I. F., Mosolov, A. A., . . . & Phillips, C. J. C. (2024). The potential of amaranth grain for feeding to poultry. World's Poultry Science Journal, 80(2), 481-509. [Crossref]
13. Janmohammadi, H., Hosseintabar-Ghasemabad, B., Amirdahri, S., Gorlov, I. F., Vladimirovna, K. E., Slozhenkina, M. I., . . . & Phillips, C. J. C. (2022). The energy value for broiler chickens of heat-treated and untreated amaranth grain, with and without enzyme addition. Agriculture, 12(11), 1810. [Crossref]
14. Kianfar, R., Di Rosa, A. R., Divari, N., Janmohammadi, H., Hosseintabar-Ghasemabad, B., Oteri, M., . . . & Seidavi, A. (2023). A comparison of the effects of raw and processed amaranth grain on laying hens’ performance, egg physicochemical properties, blood biochemistry and egg fatty acids. Animals, 13(8), 1394. [Crossref]
15. Króliczewska, B., Zawadzki, W., Bartkowiak, A., & Skiba, T. (2008). The level of selected blood indicators of laying hens fed with addition of amaranth grain. Electronic Journal of Polish Agricultural Universities, 11(2), 18.
16. Laovoravit, N., Kratzer, F. H., & Becker, R. (1986). The nutritional value of amaranth for feeding chickens. Poultry Science, 65(7), 1365-1370. [Crossref]
17. Longato, E., Meineri, G., & Peiretti, P. G. (2017). The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Animal Science Papers and Reports, 35(1), 71-86.
18. Manual, R. B. (2012). Ross 308 broiler nutrition manual. Ross Broiler Ltd: Newbridge, Midlothian, UK.
19. Marcone, M. F., Kakuda, Y., & Yada, R. Y. (2004). Amaranth as a rich dietary source of β-sitosterol and other phytosterols. Plant Foods for Human Nutrition, 58(3), 207-211. [Crossref]
20. Mendonça, S., Saldiva, P. H., Cruz, R. J., & Arêas, J. A. (2009). Amaranth protein presents cholesterol-lowering effect. Food Chemistry, 116(3), 738-742. [Crossref]
21. Mozaffarian, V. (1996). A dictionary of Iranian plant names. Farhang Moaser.
22. Nwadinigwe, A. O., Amadi, C. C., Amujiri, A. N., Nwadinigwe, C. C., & Ozokolie, C. B. (2019). Effects of pharmaceutical effluents on germination, growth and development of Amaranthus hybridus L. Nigerian Journal of Botany, 32(2), 1-11.
23. O'Harte, F. P., Mooney, M. H., & Flatt, P. R. (1999). NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes, 48(4), 758-765. [Crossref]
24. Orczewska-Dudek, S., Pietras, M., & Nowak, J. (2018). The effect of amaranth seeds, sea buckthorn pomace and black chokeberry pomace in feed mixtures for broiler chickens on productive performance, carcass characteristics and selected indicators of meat quality. Annals of Animal Science, 18(2), 501-523. [Crossref]
25. Patro, A., & Chowdhury, A. (2025). Pseudocereals: Nutritional powerhouse for a healthier future. Vigyan Varta an International E-Magazine for Science Enthusiasts, 6(3), 185-188.
26. Phillips, C. J., Hosseintabar-Ghasemabad, B., Gorlov, I. F., Slozhenkina, M. I., Mosolov, A. A., & Seidavi, A. (2023). Immunomodulatory effects of natural feed additives for meat chickens. Life, 13(6), 1287. [Crossref]
27. Popiela, E., Króliczewska, B., Zawadzki, W., Opaliński, S., & Skiba, T. (2013). Effect of extruded amaranth grains on performance, egg traits, fatty acids composition, and selected blood characteristics of laying hens. Livestock Science, 155(2-3), 308-315. [Crossref]
28. Qureshi, A. A., Lehmann, J. W., & Peterson, D. M. (1996). Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. The Journal of Nutrition, 126(8), 1972-1978. [Crossref]
29. Ravindran, V., Hood, R. L., Gill, R. J., Kneale, C. R., & Bryden, W. L. (1996). Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Animal Feed Science and Technology, 63(1-4), 323-331. [Crossref]
30. Rouckova, J., Trckova, M., & Herzig, I. (2004). The use of amaranth grain in diets for broiler chickens and its effect on performance and selected biochemical indicators. Czech Journal of Animal Science, 49(12), 532-541. [Crossref]
31. Seidavi, A., Hosseintabar-Ghasemabad, B., Gorlov, I. F., Slozhenkina, M. I., Mosolov, A. A., Oteri, M., . . . & Luigi, L. (2023). Feed additives and future perspectives. In G. Arsenos, & L. Giannenas, Sustainable use of feed additives in livestock: Novel ways for animal production (pp. 929-961). Springer International Publishing. [Crossref]
32. Shaban, E., Bouyeh, M., & Seidavi, A. (2024). The Impact of reduced licorice levels on performance, carcass characteristics, blood constituents, immunity, intestinal microflora, intestinal morphology, and breast muscle fatty acid profile in broilers. Journal of Human Environment and Health Promotion, 10(3), 161-169. [Crossref]
33. Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: A review. Molecular Nutrition and Food Research, 61(7), 1600767. [Crossref]
34. Tillman, P. B., & Waldroup, P. W. (1986). Processing grain amaranth for use in broiler diets. Poultry Science, 65(10), 1960-1964. [Crossref]
35. Tillman, P. B., & Waldroup, P. W. (1988). Performance and yields of broilers fed extruded grain amaranth and grown to market weight. Poultry Science, 67(5), 743-749. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb