1. Alamar, M. C., Tosetti, R., Landahl, S., Bermejo, A., & Terry, L. A. (2017). Assuring potato tuber quality during storage: A future perspective. Frontiers in Plant Science, 8, 2034. [
Crossref]
2. Aziz, A., Randhawa, M. A., Butt, M. S., Asghar, A., Yasin, M., & Shibamoto, T. (2012). Glycoalkaloids (α-Chaconine and α-Solanine) contents of selected pakistani potato cultivar and their dietary intake assessment. Journal of Food Science, 77(3), 58-61. [
Crossref]
3. Babazadeh, S., Ahmadi Moghaddam, P., Sabatyan, A., & Sharifian, F. (2016). Classification of potato tubers based on solanine toxicant using laser-induced light backscattering imaging. Computers and Electronics in Agriculture, 129, 1-8. [
Crossref]
4. Babazadeh, S., Ahmadi Moghaddam, P., Sabatyan, A., & Sharifian, F. (2020). Comparison of the laser backscattering and digital imaging techniques on detection of α-solanine in potatoes. Journal of Agricultural Machinery, 10(1), 49-58.
5. Baur, S., Frank, O., Hausladen, H., Hückelhoven, R., Hofmann, T., Eisenreich, W., & Dawid, C. (2021). Biosynthesis of α-solanine and α-chaconine in potato leaves (Solanum tuberosum L.)-A 13CO2 study. Food Chemistry, 365, 130461. [
Crossref]
6. Benkeblia, N. (2020). Potato Glycoalkaloids: Occurrence, biological activities and extraction for biovalorisation-a review. International Journal of Food Science & Technology, 55(6), 2305-2313. [
Crossref]
7. Çavdar, H., Senturk, M., Guney, M., Durdağı, S., Kayık, G., Supuran, C. T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: Kinetic and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 429-437. [
Crossref]
8. Chen, X., Ding, Y., & Kan, J. (2018). Changes in the content and influence factors of α-solanine in potato during storage. Emirates Journal of Food and Agriculture, 30(1), 10-16. [
Crossref]
9. del Mar Martínez-Prada, M., Curtin, Sh. J., & Gutiérrez-González, J. J. (2021). Potato improvement through genetic engineering. GM Crops & Food, 12(1), 479-496. [
Crossref]
10. Deng, Y., He, M., Feng, F., Feng, X., Zhang, Y., & Zhang, F. (2021). The distribution and changes of glycoalkaloids in potato tubers under different storage time based on MALDI-TOF mass spectrometry imaging. Talanta, 221, 121453. [
Crossref]
11. Deußer, H., Guignard, C., Hoffmann, L., & Evers, D. (2012). Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chemistry, 135(4), 2814-2824. [
Crossref]
12. Dokhani, Sh., Keramat, J., & Roofigari Haghighat, S. (2003). Total glycoalkaloids and & Alpha-Solanine changes in potato tubers during storage and heat processing. JWSS-Journal of Water and Soil Science, 7(2), 171-183.
13. Dusza, M., Sporysz, M., Sokołowska, D., & Grotkiewicz, K. (2020). Impact of post-harvest processing and storing of potato tubers on toxic compounds accumulation. Agricultural Engineering, 24(2), 39-44. [
Crossref]
14. El-Said, S. M. (2013). Removal of a pharmacological undesirable compounds from potato tuber. Research and Review in Bioscience, 7(4), 129-135.
15. Esposito, F., Fogliano, V., Cardi, T., Carputo, D., & Filippone, E. (2002). Glycoalkaloid content and chemical composition of potatoes improved with nonconventional breeding approaches. Journal of Agricultural and Food Chemistry, 50(6), 1553-1561. [
Crossref]
16. Fragoyiannis, D. A., McKinlay, R. G., & D'Mello, J. P. F. (2001). Interactions of aphid herbivory and nitrogen availability on the total foliar glycoalkaloid content of potato plants. Journal of Chemical Ecology, 27, 1749-1762. [
Crossref]
17. Friedman, M. (2006). Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. Journal of Agricultural and Food Chemistry, 54(23), 8655-8681. [
Crossref]
18. Friedman, M., & McDonald, G. M. (1999). Postharvest changes in glycoalkaloid content of potatoes. In L. S. Jackson, M. G. Knize, & J. N. Morgan, Impact of processing on food safety (pp. 121-143). Springer. [
Crossref]
19. Friedman, M., Roitman, J. N., & Kozukue, N. (2003). Glycoalkaloid and calystegine contents of eight potato cultivars. Journal of Agricultural and Food Chemistry, 51(10), 2964-2973. [
Crossref]
20. Frydecka-Mazurczyk, A., & Zgórska, K. (2001). The influence of genotype on the effects of impact damage and light exposure on the accumulation of glycoalkaloids in potato tubers. Roczniki Panstwowego Zakladu Higieny, 52(2), 139-144.
21. Garcia, M. E., Borioni, J. L., Cavallaro, V., Puiatti, M., Pierini, A. B., Murray, A. P., & Peñéñory, A. B. (2015). Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Steroids, 104, 95-110. [
Crossref]
22. Ginzberg, I., Tokuhisa, J. G., & Veilleux, R. E. (2009). Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Research, 52, 1-15. [
Crossref]
23. Gouhar, S. A., Abo‐elfadl, M. T., Gamal‐Eldeen, A. M., & El‐Daly, S. M. (2022). Involvement of miRNAs in response to oxidative stress induced by the steroidal glycoalkaloid α‐solanine in hepatocellular carcinoma cells. Environmental Toxicology, 37(2), 212-223. [
Crossref]
24. Haase, N. (2010). Glycoalkaloid concentration in potato tubers related to storage and consumer offering. Potato Research, 53(4), 297-307. [
Crossref]
25. Hodgson, E. (2012). Chapter fourteen-toxins and venoms. In V. K. Prajapati, Progress in molecular biology and translational science (pp. 373-415). Elsevier. [
Crossref]
26. Idowu, A. O., Saliu, A. O., Itakorode, B. O., Fakorede, C. N., & Arise, R. O. (2022). Toxicological effects on selected tissues of rats fed glycoalkaloid-rich and light-exposed solanum tuberosum. Journal of Nutrition and Food Security, 7(4), 512-524. [
Crossref]
27. Ji, X., Rivers, L., Zielinski, Z., Xu, M., MacDougall, E., Stephen, J., . . . & Zhang, J. (2012). Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 133(4), 1177-1187. [
Crossref]
28. Kaiser, N., Douches, D., Dhingra, A., Glenn, K. C., Herzig, P. R., Stowe, E. C., & Swarup, S. (2020). The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops. Trends in Food Science & Technology, 100, 51-66. [
Crossref]
29. Kipkoech, G. K. (2018). Determination of glycoalkaloids, phenolic acids and protease inhibitors in selected cultivated potato (solanum tuberosum l.) varieties [Doctoral dissertation, University of Nairobi]. UoN Digital Repository. https://share.google/gGWdTHd0rm9ZcDkPB
30. Kirui, K. G., Misra, A. K., Olanya, O. M., Friedman, M., El-Bedewy, R., & Ewell, P. T. (2009). Glycoalkaloid content of some superior potato clones and commercial varieties. Archives of Phytopathology and Plant Protection, 42(5), 453-463. [
Crossref]
31. Koffi, G. Y., Remaud-Siméon, M., Dué, A. E., & Combes, D. (2017). Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery. Food Chemistry, 220, 257-265. [
Crossref]
32. Kotsonis, F. N., & Burdock, G. A. (2008). Food toxicology. In C. D. Klaassen, Casarett and Doull’s Toxicology: The Basic Science of Poisons (pp. 1191-1236). McGraw-Hill.
33. Kozukue, N., & Mizuno, S. (1990). Effects of light exposure and storage temperature on greening and glycoalkaloid content in potato tubers. Journal of the Japanese Society for Horticultural Science, 59(3), 673-677. [
Crossref]
34. Lafta, A. M., & Lorenzen, J. H. (2000). Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. Journal of the American Society for Horticultural Science, 125(5), 563-566. [
Crossref]
35. Li, M., Tian, S. L., Xie, M. H., Li, S. Q., Feng, H. D., & Liu, G. (2010). Effect of different color polyethylene food packaging bags on greening and steriodal glycoalkaloids content of potatoes. Food Science, 31(4), 264-267.
36. Liu, H., Roasa, J., Mats, L., Zhu, H., & Shao, S. (2020). Effect of acid on glycoalkaloids and acrylamide in French fries. Food Additives & Contaminants: Part A, 37(6), 938-945. [
Crossref]
37. Liu, W., Zhang, N., Li, B., Fan, S., Zhao, R., Li, L. P., . . . & Zhao, Y. (2014). Determination of α-chaconine and α-solanine in commercial potato crisps by QuEChERS extraction and UPLC-MS/MS. Chemical Papers, 68(11), 1498-1504. [
Crossref]
38. Loveniers, P. J. (2019). Opportunities and problems concerning potato production and quality in lam dong, vietnam. Ghent University. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=p9Awe5QAAAAJ&citation_for_view=p9Awe5QAAAAJ:u5HHmVD_uO8C
39. Love, S. L., Baker, T. P., Thompson‐Johns, A., & Werner, B. K. (1996). Induced mutations for reduced tuber glycoalkaloid content in potatoes. Plant Breeding, 115(2), 119-122. [
Crossref]
40. Lu, B., Sun, J., Yang, N., & Hang, Y. (2019). Fluorescence hyperspectral image technique coupled with HSI method to predict solanine content of potatoes. Journal of Food Processing and Preservation, 43(11), e14198. [
Crossref]
41. Machado, R. M. D., Toledo, M. C. F., & Garcia, L. C. (2007). Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control, 18(5), 503-508. [
Crossref]
42. Mäder, J., Rawel, H., & Kroh, L. W. (2009). Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing. Journal of Agricultural and Food Chemistry, 57(14), 6292-6297. [
Crossref]
43. Manrique-Moreno, M., Londoño-Londoño, J., Jemioła-Rzemińska, M., Strzałka, K., Villena, F., Avello, M., & Suwalsky, M. (2014). Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838(1), 266-277. [
Crossref]
44. Mekapogu, M., Sohn, H., Kim, S., Lee, Y., Park, H., Jin, Y., . . . & Kim, Y. (2016). Effect of light quality on the expression of glycoalkaloid biosynthetic genes contributing to steroidal glycoalkaloid accumulation in potato. American Journal of Potato Research, 93, 264-277. [
Crossref]
45. Muñoa, L., Chacaltana, C., Sosa, P., Gastelo, M., Zum Felde, T., & Burgos, G. (2022). Effect of environment and peeling in the glycoalkaloid concentration of disease-resistant and heat-tolerant potato clones. Journal of Agriculture and Food Research, 7, 100269. [
Crossref]
46. Mystkowska, I. (2019). Reduction of glycoalkaloids in potato under the influence of biostimulators. Applied Ecology & Environmental Research, 17(2), 3567-3574. [
Crossref]
47. Najm, A. A., Haj Seyed Hadi, M. R., Fazeli, F., Darzi, M. T., & Rahi, A. (2012). Effect of integrated management of nitrogen fertilizer and cattle manure on the leaf chlorophyll, yield, and tuber glycoalkaloids of agria potato. Communications in Soil Science and Plant Analysis, 43(6), 912-923. [
Crossref]
48. Nie, X., Li, C., Zhang, G., Shao, Z., Wang, X., Shi, H., & Guo, H. (2019). Light exposure and wounding: Synergistic effects on steroidal glycoalkaloid accumulation in potato tubers during storage. International Journal of Food Science & Technology, 54(10), 2939-2948. [
Crossref]
49. Nie, X., Zhang, G., Lv, Sh., & Guo, H. (2018). Steroidal glycoalkaloids in potato foods as affected by cooking methods. International Journal of Food Properties, 21(1), 1875-1887. [
Crossref]
50. Nielsen, S. D., Schmidt, J. M., Kristiansen, G. H., Dalsgaard, T. K., & Larsen, L. B. (2020). Liquid chromatography mass spectrometry quantification of α-solanine, α-chaconine, and solanidine in potato protein isolates. Foods, 9(4), 416. [
Crossref]
51. Okamoto, H., Ducreux, L. J. M., Allwood, J. W., Hedley, P. E., Wright, A., Gururajan, V., . . . & Taylor, M. A. (2020). Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. Frontiers in Plant Science, 11, 753. [
Crossref]
52. Omayio, D. G., ABONG, G. O., & Okoth, M. W. (2016). A review of occurrence of glycoalkaloids in potato and potato products. Current Research in Nutrition and Food Science, 4(3), 195-202. [
Crossref]
53. Popova, I., Sell, B., Pillai, S. S., Kuhl, J., & Dandurand, L. M. (2022). High-performance liquid chromatography-mass spectrometry analysis of glycoalkaloids from underexploited Solanum species and their acetylcholinesterase inhibition activity. Plants, 11(3), 269. [
Crossref]
54. Roepcke, C. B. S. (2011). Development of acetylcholinesterase biosensors for neurotoxins detection in foods and the environment [Doctoral Thesis, Universität Stuttgart]. https://elib.uni-stuttgart.de/server/api/core/bitstreams/2ecaf9be-85ff-44e1-81fd-4fceb2f4d036/content
55. Romanucci, V., Di Fabio, G., Di Marino, C., Davinelli, S., Scapagnini, G., & Zarrelli, A. (2018). Evaluation of new strategies to reduce the total content of α-solanine and α-chaconine in potatoes. Phytochemistry Letters, 23, 116-119. [
Crossref]
56. Rytel, E. (2012). Changes in glycoalkaloid and nitrate content in potatoes during dehydrated dice processing. Food Control, 25(1), 349-354. [
Crossref]
57. Rytel, E., Tajner-Czopek, A., Aniołowska, M., & Hamouz, K. (2013). The influence of dehydrated potatoes processing on the glycoalkaloids content in coloured-fleshed potato. Food Chemistry, 141(3), 2495-2500. [
Crossref]
58. Sadighara, P., Godarzi, S., Bahmani, M., & Asadi-Samani, M. (2016). Antioxidant activity and properties of walnut brown seed coat extract. Journal of Global Pharma Technology, 11(8), 26-30.
59. Sánchez del Pulgar, J., Lucarini, M., Aguzzi, A., Gabrielli, P., Parisi, B., Pacifico, D., . . . & Lombardi-Boccia, G. (2021). Glycoalkaloid content in Italian potato breeding clones improved for resistance against potato tuber moth (Phthorimaea operculella Zeller). Potato Research, 64, 229-240. [
Crossref]
60. Satarug, S. (2018). Dietary cadmium intake and its effects on kidneys. Toxics, 6(1), 15. [
Crossref]
61. Shepherd, L. V. T., Hackett, C. A., Alexander, C. J., McNicol, J. W., Sungurtas, J. A., McRae, D., . . . & Davies, H. V. (2016). Impact of light-exposure on the metabolite balance of transgenic potato tubers with modified glycoalkaloid biosynthesis. Food Chemistry, 200, 263-273. [
Crossref]
62. Skarkova, J., Ostry, V., & Ruprich, J. (2008). Instrumental HPTLC determination of α-solanine and α-chaconine in peeled potato tubers. JPC-Journal of Planar Chromatography-Modern TLC, 21, 113-117. [
Crossref]
63. Smith, S. W., Giesbrecht, E., Thompson, M., Nelson, L. S., & Hoffman, R. S. (2008). Solanaceous steroidal glycoalkaloids and poisoning by Solanum torvum, the normally edible susumber berry. Toxicon, 52(6), 667-676. [
Crossref]
64. Song, F., Li, C., Zhang, N., He, X., Yang, H., Yan, Z., . . . & Huang, K. (2023). A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biology and Technology, 196, 112176. [
Crossref]
65. Sotelo, A., & Serrano, B. (2000). High-performance liquid chromatographic determination of the glycoalkaloids α-solanine and α-chaconine in 12 commercial varieties of Mexican potato. Journal of Agricultural and Food Chemistry, 48(6), 2472-2475. [
Crossref]
66. Trejo-Escobar, D., Valencia-Flórez, L., Mejía-España, D., & Hurtado, A. M. (2019). Influence of fertilization on glycoalkaloid content in four potato genotypes (Solanum tuberosum). 7th International Engineering, Sciences and Technology Conference (IESTEC), 36-39. [
Crossref]
67. Uluwaduge, D. I. (2018). Glycoalkaloids, bitter tasting toxicants in potatoes: A review. International Journal of Food Science and Nutrition, 3(4), 188-193.
68. Urban, J., Hamouz, K., Jaromír, L., Pulkrábek, J., & Pazderu, K. (2018). Effect of genotype, flesh colour and environment on the glycoalkaloid content in potato tubers from integrated agriculture. Plant Soil and Environment, 64, 186-191. [
Crossref]
69. Valcarcel, J., Reilly, K., Gaffney, M., & O'Brien, N. (2014). Effect of genotype and environment on the glycoalkaloid content of rare, heritage, and commercial potato varieties. Journal of Food Science, 79(5), T1039-T1048. [
Crossref]
70. Vorne, V., Ojanperä, K., De Temmerman, L., Bindi, M., Högy, P., Jones, M. B., . . . & Persson, K. (2002). Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment ‘CHIP-project’. European Journal of Agronomy, 17(4), 369-381. [
Crossref]
71. Wen, G., Cambouris, A. N., Bertrand, A., Ziadi, N., Li, H., & Khelifi, M. (2019). Nitrogen fertilization effects on the leaf chemical concentrations in Russet Burbank potato. Field Crops Research, 232, 40-48. [
Crossref]
72. Yanlin, J., Wang-tian, W., Di, W., Jinwen, Z., Wei, W., Ying, L., & Feifei, Z. (2010). Inducing effects of different light qualities on steroidal glycoalkaloids contents in potato tuber. Jiangsu Journal of Agricultural Sciences, 26(1), 40-45.
73. Zhang, L., Li, M., Zhang, G., Wu, L., Cai, D., & Wu, Z. (2018). Inhibiting sprouting and decreasing α-solanine amount of stored potatoes using hydrophobic nanosilica. ACS Sustainable Chemistry & Engineering, 6(8), 10517-10525. [
Crossref]