Volume 10, Issue 3 (7-2024)                   jhehp 2024, 10(3): 143-151 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daliri Sosefi Z, Bimakr M, Ganjloo A. Optimization of Microwave-Assisted Extraction of Bioactive Compounds from Veronica Persica Using Response Surface Methodology. jhehp 2024; 10 (3) :143-151
URL: http://jhehp.zums.ac.ir/article-1-646-en.html
1- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
Abstract:   (409 Views)
Background: The current study aimed to optimize microwave-assisted extraction (MAE) for the recovery of bioactive compounds from Veronica Persica and to enhance extraction yield through ultrasonic pretreatment as an emerging technique.
Methods: The MAE was optimized in terms of microwave power, solid-to-solvent ratio, and irradiation time through response surface methodology (RSM) for maximum extraction yield. The extraction yield was further enhanced by using ultrasonic pretreatment with different levels of ultrasound power, temperature, and sonication time. The total phenolic content and radical scavenging activity were determined through the Folin-Ciocalteu method and DPPH and OH free radicals scavenging activity assays, respectively.
Results: The optimal conditions for maximizing extraction yield were 211 W microwave power, 14 min irradiation time, and 1:33.5 g/mL solid-to-solvent ratio. Under the optimal conditions, the predicted extraction yield was 12.12%. The results confirmed that ultrasonic pretreatment effectively enhanced the release of bioactive compounds from aerial parts of V. persica. Moreover, scanning electron microscopy images indicated a positive effect of ultrasonic pretreatment on enhancing bioactive compound recovery through damage to the cell structure of the treated samples.
Conclusion: The results indicated that using ultrasonic and microwave energy can speed up the extraction process and increase the quality of the extracted biomass.
Full-Text [PDF 1615 kb]   (121 Downloads)    
Type of Study: Original Article | Subject: Food Safety and Hygiene
Received: 2024/06/8 | Accepted: 2024/07/2 | Published: 2024/07/14

References
1. Abbas, M., Ahmed, D., Qamar, M. T., Ihsan, S., & Noor, Z. I. (2021). Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresource Technology Reports, 15, 100746. [Crossref] [Google Scholar]
2. Ajami, M. R., Ganjloo, A., & Bimakr, M. (2023). Continuous fast microwave-assisted extraction of radish leaves polysaccharides: optimization, preliminary characterization, biological, and techno-functional properties. Biomass Conversion and Biorefinery, 13(16), 14987-15000. [Crossref] [Google Scholar]
3. Alam, P., Siddiqui, N. A., Rehman, M. T., Hussain, A., Akhtar, A., Mir, S. R., & Alajmi, M. F. (2021). Box-behnken design (BBD)-based optimization of microwave-assisted extraction of parthenolide from the stems of Tarconanthus camphoratus and cytotoxic analysis. Molecules, 26(7), 1876. [Crossref] [Google Scholar]
4. Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2018). Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food and Bioproducts Processing, 107, 36-48. [Crossref] [Google Scholar]
5. Alara, O. R., Ukaegbu, C. I., Abdurahman, N. H., Alara, J. A., & Ali, H. A. (2023). Plant-sourced antioxidants in human health: A state-of-art review. Current Nutrition & Food Science, 19(8), 817-830. [Crossref] [Google Scholar]
6. Arya, S. S., More, P. R., Ladole, M. R., Pegu, K., & Pandit, A. B. (2023). Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. Ultrasonics Sonochemistry, 98, 106504. [Crossref] [Google Scholar]
7. Baltacıoğlu, H., Baltacıoğlu, C., Okur, I., Tanrıvermiş, A., & Yalıç, M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy, 113, 103204. [Crossref] [Google Scholar]
8. Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvent extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49, 668-674. [Crossref] [Google Scholar]
9. Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595. [Crossref] [Google Scholar]
10. Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., . . . & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22, 100301. [Crossref] [Google Scholar]
11. Feki, F., Klisurova, D., Masmoudi, M. A., Choura, S., Denev, P., Trendafilova, A., . . . & Sayadi, S. (2021). Optimization of microwave-assisted extraction of simmondsins and polyphenols from Jojoba (Simmondsia chinensis) seed cake using box-behnken statistical design. Food Chemistry, 356, 129670. [Crossref] [Google Scholar]
12. Fierascu, R. C., Georgiev, M. I., Fierascu, I., Ungureanu, C., Avramescu, S. M., Ortan, A., . . . & Anuta, V. (2018). Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food and Chemical Toxicology, 111, 44-52. [Crossref] [Google Scholar]
13. Gala, S., Sumarno, S., & Mahfud, M. (2022). Optimization of microwave-assisted extraction of natural dyes from jackfruit wood (Artocarpus heterophyllus Lamk) by response surface methodology. Engineering and Applied Science Research, 49(1), 29-35. [Google Scholar]
14. Garcia-Vaquero, M., Ummat, V., Tiwari, B., & Rajauria, G. (2020). Exploring ultrasound, microwave, and ultrasound-microwave-assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Marine Drugs, 18(3), 172. [Crossref] [Google Scholar]
15. Harput, U. S., Saracoglu, I., Inoue, M., & Ogihara, Y. (2002). Phenylethanoid and iridoid glycosides from Veronica persica. Chemical and Pharmaceutical Bulletin, 50(6), 869-871. [Crossref] [Google Scholar]
16. Imtiaz, F., Ahmed, D., Abdullah, R. H., & Ihsan, S. (2023). Green extraction of bioactive compounds from Thuja orientalis leaves using microwave-and ultrasound-assisted extraction and optimization by response surface methodology. Sustainable Chemistry and Pharmacy, 35, 101212. [Crossref] [Google Scholar]
17. Karimi, S., Sharifzadeh, S., & Abbasi, H. (2020). Sequential ultrasound-microwave assisted extraction as a green method to extract essential oil from Zataria multiflora. Journal of Food and Bioprocess Engineering, 3(2), 101-109. [Google Scholar]
18. Kumar, G., Le, D. T., Durco, J., Cianciosi, S., Devkota, L., & Dhital, S. (2023). Innovations in legume processing: Ultrasound-based strategies for enhanced legume hydration and processing. Trends in Food Science & Technology, 139(1), 104122. [Crossref] [Google Scholar]
19. Kumar, S., Chauhan, N., Tyagi, B., Yadav, P., Samanta, A. K., & Tyagi, A. K. (2023). Exploring bioactive compounds and antioxidant properties of twenty-six Indian medicinal plant extracts: A correlative analysis for potential therapeutic insights. Food and Humanity, 1, 1670-1679. [Crossref] [Google Scholar]
20. Latiff, N. A., Ong, P. Y., Abd Rashid, S. N. A., Abdullah, L. C., Mohd Amin, N. A., & Fauzi, N. A. M. (2021). Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Scientific Reports, 11(1), 1-12. [Crossref] [Google Scholar]
21. Liu, X., Huang, H., Yang, L., & Huang, K. (2023). Degree of coupling in microwave-heating polar-molecule reactions. Molecules, 28(3), 1364. [Crossref] [Google Scholar]
22. Maier, A., Padureanu, V., Lupu, M. I., Canja, C. M., Badarau, C., Padureanu, C., . . . & Poiana, M. A. (2023). Optimization of a procedure to improve the extraction rate of biologically active compounds in red grape must using high-power ultrasound. Sustainability, 15(8), 6697. [Crossref] [Google Scholar]
23. Mali, P. S., & Kumar, P. (2023). Optimization of microwave-assisted extraction of bioactive compounds from black bean waste and evaluation of its antioxidant and antidiabetic potential in vitro. Food Chemistry Advances, 3, 100543. [Crossref] [Google Scholar]
24. Nanzai, B., Mochizuki, A., Wakikawa, Y., Masuda, Y., Oshio, T., & Yagishita, K. (2023). Sonoluminescence intensity and ultrasonic cavitation temperature in organic solvents: Effects of generated radicals. Ultrasonics Sonochemistry, 95, 106357. [Crossref] [Google Scholar]
25. Nazal, M. K., Sajid, M., & Gijjapu, D. R. (2023). Membrane-based inverted liquid-liquid extraction of organochlorine pesticides in aqueous samples: evaluation, merits, and demerits. Chemical Papers, 1-11. [Crossref] [Google Scholar]
26. Nguyen, Q. T., Nguyen, V. T., Phan, T. H., Duy, T. N., Park, S. H., & Park, W. G. (2023). Numerical study of dynamics of cavitation bubble collapse near oscillating walls. Physics of Fluids, 35(1), 013306. [Crossref] [Google Scholar]
27. Ogura, Y., Taniya, K., Horie, T., Tung, K. L., Nishiyama, S., Komoda, Y., & Ohmura, N. (2023). Process intensification of synthesis of metal-organic framework particles assisted by ultrasound irradiation. Ultrasonics Sonochemistry, 96, 106443. [Crossref] [Google Scholar]
28. Özbek, H. N., Yanık, D. K., Fadıloğlu, S., & Göğüş, F. (2020). Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Separation Science and Technology, 55(2), 289-299. [Crossref] [Google Scholar]
29. Ozdemir, M., & Karagoz, S. (2023). Effects of microwave drying on physicochemical characteristics, microstructure, and antioxidant properties of propolis extract. Journal of the Science of Food and Agriculture, 104(4), 2189-2197. [Crossref] [Google Scholar]
30. Patrascu, M., & Radoiu, M. (2016). Rose essential oil extraction from fresh petals using synergetic microwave & ultrasound energy: Chemical composition and antioxidant activity assessment. Journal of Chemistry and Chemical Engineering, 10(3), 136-142. [Crossref] [Google Scholar]
31. Pongmalai, P., Devahastin, S., Chiewchan, N., & Soponronnarit, S. (2015). Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Separation and Purification Technology, 144, 37-45. [Crossref] [Google Scholar]
32. Poodi, Y., Bimakr, M., Ganjloo, A., & Zarringhalami, S. (2018). Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana Berg.) leaves using ultrasonic waves. Food and Bioproducts Processing, 108, 37-50. [Crossref] [Google Scholar]
33. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2020). Effects of binary solvent system on radical scavenging activity and recovery of verbascoside from Lemon verbena leaves. Journal of Human Environment and Health Promotion, 6(2), 69-76. [Crossref] [Google Scholar]
34. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2022). Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. Journal of Food Measurement and Characterization, 16(6), 4388-4401. [Crossref] [Google Scholar]
35. Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2023). Optimization of polyphenolic compounds from Gossampinus malabarica flowers by microwave-assisted extraction technology. Future Foods, 8, 100271. [Crossref] [Google Scholar]
36. Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2024). Optimization of microwave-assisted extraction of phenolic compounds and antioxidants from Careya sphaerica Roxb. flowers using response surface methodology. Applied Food Research, 4(1), 100379. [Crossref] [Google Scholar]
37. Saifullah, M., McCullum, R., & Vuong, Q. V. (2021). Optimization of microwave-assisted extraction of polyphenols from Lemon Myrtle: Comparison of modern and conventional extraction techniques based on bioactivity and total polyphenols in dry extracts. Processes, 9(12), 2212. [Crossref] [Google Scholar]
38. Saini, R. K., & Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90-103. [Crossref] [Google Scholar]
39. Salehi, B., Shivaprasad Shetty, M., V. Anil Kumar, N., Živković, J., Calina, D., Oana Docea, A., . . . & Nicola, S. (2019). Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology. Molecules, 24(13), 2454. [Crossref] [Google Scholar]
40. Saravana, P. S., Ummat, V., Bourke, P., & Tiwari, B. K. (2023). Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Critical Reviews in Biotechnology, 43(6), 904-919. [Crossref] [Google Scholar]
41. Sharifi-Rad, J., Tayeboon, G. S., Niknam, F., Sharifi-Rad, M., Mohajeri, M., Salehi, B., & Iriti, M. (2018). Veronica persica Poir. extract-antibacterial, antifungal, and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase, and xanthine oxidase. Cellular and Molecular Biology, 64(8), 50-56. [Crossref] [Google Scholar]
42. Sharifzadeh, S., Karimi, S., Abbasi, H., & Assari, M. (2022). Sequential ultrasound-microwave technique as an efficient method for extraction of essential oil from Lavandula coronopifolia Poir. Journal of Food Measurement and Characterization, 16(1), 377-390. [Crossref] [Google Scholar]
43. Sharma, A., Mazumdar, B., & Keshav, A. (2021). Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extraction of betacyanin and betaxanthin. Biomass Conversion and Biorefinery, 13(2), 1-17. [Crossref] [Google Scholar]
44. Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., . . . & Ma, H. (2023). A comprehensive review of ultrasonic-assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. [Crossref] [Google Scholar]
45. Shim, K. S., Song, H. K., Hwang, Y. H., Chae, S., Kim, H. K., Jang, S., . . . & Kim, K. M. (2022). Ethanol extract of Veronica persica ameliorates house dust mite-induced asthmatic inflammation by inhibiting STAT-3 and STAT-6 activation. Biomedicine & Pharmacotherapy, 152, 113264. [Crossref] [Google Scholar]
46. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. [Crossref]
47. Sommano, S., Kerdtongmee, P., Chompoo, M., & Nisoa, M. (2015). Fabrication and characteristics of phase control microwave power for jasmine volatile oil extraction. Journal of Essential Oil Research, 27(4), 316-323. [Crossref] [Google Scholar]
48. Tomasi, I. T., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452. [Crossref] [Google Scholar]
49. Trujillo‐Mayol, I., Céspedes‐Acuña, C., Silva, F. L., & Alarcón‐Enos, J. (2019). Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. Journal of Food Process Engineering, 42(6), e13197. [Crossref] [Google Scholar]
50. Walayat, N., Yurdunuseven-Yıldız, A., Kumar, M., Goksen, G., Öztekin, S., & Lorenzo, J. M. (2023). Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction. Critical Reviews in Food Science and Nutrition, 5, 1-18. [Crossref] [Google Scholar]
51. Xiaokang, W., Lyng, J. G., Brunton, N. P., Cody, L., Jacquier, J. C., Harrison, S. M., & Papoutsis, K. (2020). Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions. Biotechnology Reports, 27, e00504. [Crossref] [Google Scholar]
52. Yadav, R., Mohapatra, D., Subeesh, A., Shabeer, T. P., & Giri, S. K. (2023). Optimization of sequential ultrasound-microwave assisted extraction of polyphenols-rich concrete from tuberose flowers through modelling. Process Biochemistry, 134, 175-185. [Crossref] [Google Scholar]
53. Zengin, G., Cakmak, Y. S., Guler, G. O., & Aktumsek, A. (2010). In vitro antioxidant capacities and fatty acid compositions of three Centaurea species collected from Central Anatolia region of Turkey. Food and Chemical Toxicology, 48, 2638-2641. [Crossref] [Google Scholar]
54. Zhang, H., Li, H., Zhang, Z., & Hou, T. (2021). Optimization of ultrasound‐assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities. Journal of Food Science, 86(2), 306-318. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb