Volume 10, Issue 2 (5-2024)                   jhehp 2024, 10(2): 111-117 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baghaie A H, Ghaffar Jabbari A, Nazmabadi M. Effect of Different Iron Fertilizers and P.indica Fungus Inoculation on Diesel Oil Bio-Degradation in Drought-Stressed Soil. jhehp 2024; 10 (2) :111-117
URL: http://jhehp.zums.ac.ir/article-1-643-en.html
1- Department of Soil Science, Arak Branch, Islamic Azad University, Arak, Iran.
2- Departments of Biology, Arak Branch, Islamic Azad University, Arak, Iran.
Abstract:   (418 Views)
Background: This research investigated the effects of various iron fertilizers and the introduction of Piriformospora indica (P. indica) fungus on the biodegradation of diesel oil in soil experiencing water deficiency.  
Methods: The treatments included applying pure Fe at rates of 0, 60, and 90 kg/ha, derived from Fe sulfate (FeSO4) and Fe slag (containing 58.2 % Fe2O3), in a diesel oil-contaminated soil with concentrations of 0 % and 8 % (W/W). These treatments were implemented in a corn plant cultivation system, where the plants were inoculated with P.indica fungus under conditions of drought stress. After 90 days, the plant and soil Fe concentration was determined by atomic absorption spectroscopy (AAS). Furthermore, the extent of diesel oil bio-degradation in the soil was assessed.
Results: Applying 90 kg/ha pure Fe from Fe sulfate and Fe slag significantly enhanced the bio-degradation of diesel oil in the soil by 13.2 and 16.1 %, respectively. However, the efficiency of this process was lower under drought-stress conditions. In addition, Plant inoculation with P.indica significantly enhanced the diesel oil bio-degradation of the soil contaminated with 8 % (W/W) diesel oil under drought stress by 15.7 %. Moreover, the soil microbial activity was significantly increased by 14.1 %.  
Conclusion: The combined use of P.indica, along with iron slag and iron sulfate, markedly enhances the biodegradation process of diesel oil within the soil.
Full-Text [PDF 587 kb]   (88 Downloads)    
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2024/03/9 | Accepted: 2024/04/21 | Published: 2024/05/4

References
1. Abdi Ardestani, S., Khalili, B., & Majidi, M. (2021). Effects of drought stress and species variation on carbon and nitrogen microbial biomass and β-glucosaminidase activity in the rhizosphere of grasses. JWSS-Isfahan University of Technology, 25(1), 91-102. [Crossref] [Google Scholar]
2. Abedi, M., Baghaie, A. H., & Toranjzar, H. (2023). Effect of organic and inorganic iron sources on pb concentration of the plants grown in the soil treated with the biochar of Arak municipal sewage sludge. Journal of Human Environment and Health Promotion, 9(2), 106-111. [Crossref] [Google Scholar]
3. Abedi, M., Baghaie, A. H., & Toranjzar, H. (2023). Plant inoculation with Piriformospora indica fungus and additive effects of organic and inorganic Zn fertilizer on decreasing the Cd concentration of the plants cultivated in the Cd-polluted soil. Environmental Health Engineering and Management Journal, 10(3), 301-309. [Crossref] [Google Scholar]
4. Adesina, O. A., Ewim, D. R. E., Lala, M., Ogunyemi, A., & Adeniyi, A. T. (2023). Concentrations of polycyclic aromatic hydrocarbon in crude oil polluted soil and its risk assessment. Polycyclic Aromatic Compounds, 43(5), 4346-4353. [Crossref] [Google Scholar]
5. Ambaye, T. G., Formicola, F., Sbaffoni, S., Franzetti, A., & Vaccari, M. (2023). Life cycle assessment of bioslurry and bioelectrochemical processes for sustainable remediation of soil polluted with petroleum hydrocarbons: An experimental study. Sustainable Production and Consumption, 36, 416-424. [Crossref] [Google Scholar]
6. Ambaye, T. G., Vaccari, M., Franzetti, A., Prasad, S., Formicola, F., Rosatelli, A., . . . & Rtimi, S. (2023). Microbial electrochemical bioremediation of petroleum hydrocarbons (PHCs) pollution: Recent advances and outlook. Chemical Engineering Journal, 452, 139372. [Crossref] [Google Scholar]
7. Ansari, A., Wrights, J., & Jaikishun, S. (2023). Earthworms in bioremediation of soils contaminated with petroleum hydrocarbons. In Vermicomposting for Sustainable Food Systems in Africa (pp. 349-368). Springer. [Crossref] [Google Scholar]
8. Aslam, M. M., Karanja, J., & Bello, S. K. (2019). Piriformospora indica colonization reprograms plants to improve P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiological and Molecular Plant Pathology, 106, 232-237. [Crossref] [Google Scholar]
9. Baghaie, A. H., & Aghilizefreei, A. (2020). Iron enriched green manure can increase wheat Fe concentration in Pb-polluted soil in the presence of Piriformospora indica (P. indica). Soil and Sediment Contamination: An International Journal, 29(7), 721-743. [Crossref] [Google Scholar]
10. Bagheri, S., Baghaei, A., & Niei, S. M. (2017). Effect of enriched vermicompost with iron slag on corn Fe availability in cadmium polluted. Iranian Journal of Soil and Water Research, 48(4), 771-780. [Google Scholar]
11. Das, S., Galgo, S. J., Alam, M. A., Lee, J. G., Hwang, H. Y., Lee, C. H., & Kim, P. J. (2020). Recycling of ferrous slag in agriculture: Potentials and challenges. Critical Reviews in Environmental Science and Technology, 52(8), 1247-1281. [Crossref] [Google Scholar]
12. Gao, W., Zhou, W., Lyu, X., Liu, X., Su, H., Li, C., & Wang, H. (2023). Comprehensive utilization of steel slag: A review. Powder Technology, 118449. [Crossref] [Google Scholar]
13. Ghorbani, A., Razavi, S., Omran, V. G., & Pirdashti, H. (2018). Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology, 65, 898-907. [Crossref] [Google Scholar]
14. Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., . . . & Pereira, E. (2016). Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 332. [Crossref] [Google Scholar]
15. Hatami, E., Abbaspour, A., & Dorostkar, V. (2019). Phytoremediation of a petroleum-polluted soil by native plant species in Lorestan Province, Iran. Environmental Science and Pollution Research, 26, 24323-24330. [Crossref] [Google Scholar]
16. Hoang, S. A., Lamb, D., Seshadri, B., Sarkar, B., Choppala, G., Kirkham, M., & Bolan, N. S. (2021). Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. Journal of Hazardous Materials, 401, 123282. [Crossref] [Google Scholar]
17. Hosseini, K., Taghavi, L., Ghasemi, S., & Dehghani Ghanatghestani, M. (2023). Health risk assessment of total petroleum hydrocarbons and heavy metals in groundwater and soils in petrochemical pipelines. International Journal of Environmental Science and Technology, 20(2), 1411-1420. [Crossref] [Google Scholar]
18. Jamali, A., Sohrabi, Y., Mardeh, A. S., & Hoseinpanahi, F. (2020). Morphological and yield responses of 20 genotypes of bread wheat to drought stress. Archives of Biological Sciences, 72(1), 71-79. [Crossref] [Google Scholar]
19. Jogawat, A., Saha, S., Bakshi, M., Dayaman, V., Kumar, M., Dua, M., . . . & Johri, A. K. (2013). Piriformospora indica reduces growth diminution of rice seedlings during high salt stress. Plant Signaling & Behavior, 8(10), e26891. [Crossref] [Google Scholar]
20. Karchegani, S. M., Hoodaji, M., & Kalbasi, M. (2014). The effect of steel converter slag application along with sewage sludge in iron nutrition and corn plant yield. Bulletin of Environment, Pharmacology and Life Sciences, 3(3), 96-104. [Google Scholar]
21. Kazemi, E., Baradaran, R., Seghat eslami, M. J., & Ghasemi, A. (2014). Effect of Zn and Fe foliar application on grain sorghum under drought stress. Applied Field Crops Research, 27(102), 190-196. [Google Scholar]
22. Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. CATENA, 193, 104621. [Crossref] [Google Scholar]
23. Kwon, J. H., Ji, M. K., Kumar, R., Islam, M. M., Khan, M. A., Park, Y. K., . . . & Jeon, B. H. (2023). Recent advancement in enhanced soil flushing for remediation of petroleum hydrocarbon-contaminated soil: a state-of-the-art review. Reviews in Environmental Science and Bio/Technology, 22(3), 679-714. [Crossref] [Google Scholar]
24. Li, D., Zheng, X., Lin, L., An, Q., Jiao, Y., Li, Q., . . . & Xie, C. (2022). Remediation of soils co-contaminated with cadmium and dichlorodiphenyltrichloroethanes by king grass associated with Piriformospora indica: Insights into the regulation of root excretion and reshaping of rhizosphere microbial community structure. Journal of Hazardous Materials, 422, 126936. [Crossref] [Google Scholar]
25. Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. [Crossref] [Google Scholar]
26. Malar, S., Shivendra Vikram, S., JC Favas, P., & Perumal, V. (2016). Lead heavy metal toxicity induced changes in growth and antioxidative enzyme levels in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1), 1-11. [Crossref] [Google Scholar]
27. Mfarrej, M. F. B., Wang, X., Fahid, M., Saleem, M. H., Alatawi, A., Ali, S., . . . & Fahad, S. (2023). Floating treatment wetlands (FTWs) is an innovative approach for the remediation of petroleum hydrocarbons-contaminated water. Journal of Plant Growth Regulation, 42(3), 1402-1420. [Crossref] [Google Scholar]
28. Milashi, L. R., Javid, M. G., Alahdadi, I., & Darbandi, A. I. (2020). Alleviation of salt stress and improvement of Fe accumulation in wheat grain, using slow-release fertilizer enriched with Fe. Journal of Plant Nutrition, 43(20), 2990-3001. [Crossref] [Google Scholar]
29. Mojdehi, F., Taghizadeh, M., Baghaie, A. H., Changizi, M., & Khaghani, S. (2020). Organic amendment can decrease plant abiotic stress in a soil co-contaminated with lead and cadmium under ornamental sunflower cultivation. International Archives of Health Sciences, 7(2), 89-95. [Google Scholar]
30. Muthukumar, B., Surya, S., Sivakumar, K., AlSalhi, M. S., Rao, T. N., Devanesan, S., . . . & Rajasekar, A. (2023). Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. Chemosphere, 310, 136826. [Crossref] [Google Scholar]
31. Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation, 17, 100526. [Crossref] [Google Scholar]
32. Parus, A., Ciesielski, T., Woźniak-Karczewska, M., Ślachciński, M., Owsianiak, M., Ławniczak, Ł., . . . & Chrzanowski, Ł. (2023). Basic principles for biosurfactant-assisted (bio) remediation of soils contaminated by heavy metals and petroleum hydrocarbons-A critical evaluation of the performance of rhamnolipids. Journal of Hazardous Materials, 443, 130171. [Crossref] [Google Scholar]
33. Saharan, Y., Singh, J., Goyat, R., Umar, A., Ibrahim, A. A., Akbar, S., & Baskoutas, S. (2023). Recent advances in soil cleanup technologies for oil spills: a systematic review. Water, Air, & Soil Pollution, 234(8), 503. [Crossref] [Google Scholar]
34. Sarma, N., Goswami, M., Rabha, S., Patowary, R., & Devi, A. (2023). Baseline study of water, soil, and identification of potential native phytoremediators of total petroleum hydrocarbon from oil-contaminated areas in the vicinity of Geleky oilfield of Assam. Environmental Monitoring and Assessment, 195(7), 1-24. [Crossref] [Google Scholar]
35. Sarvi Moghanlo, V., Chorom, M., Falah, M., & Motamedy, H. (2012). Evaluation of the effect of Myccorhiza and degrading bacteria in enhancing phytoremediation of oil compound in oil contaminated soil. Water and Soil, 26(4), 832-841. [Google Scholar]
36. Takkar, P., & Kaur, N. (1984). HCl method for Fe2+ estimation to resolve iron chlorosis in plants. Journal of Plant Nutrition, 7(1-5), 81-90. [Crossref] [Google Scholar]
37. Xu, L., Wang, A., Wang, J., Wei, Q., & Zhang, W. (2017). Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. The Crop Journal, 5(3), 251-258. [Crossref] [Google Scholar]
38. Yaghoubian, Y., Goltapeh, E. M., Pirdashti, H., Esfandiari, E., Feiziasl, V., Dolatabadi, H. K., . . . & Hassim, M. H. (2014). Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agricultural Research, 3, 239-245. [Crossref] [Google Scholar]
39. Yang, L., Han, D., Jin, D., Zhang, J., Shan, Y., Wan, M., . . . & Jiao, W. (2023). Soil physiochemical properties and bacterial community changes under long-term polycyclic aromatic hydrocarbon stress in situ steel plant soils. Chemosphere, 334, 138926. [Crossref] [Google Scholar]
40. Zamani, J., Hajabbasi, M. A., Alaie, E., Sepehri, M., Leuchtmann, A., & Schulin, R. (2016). The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleumcontaminated soil. International Journal of Phytoremediation, 18(3), 278-287. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb