Volume 10, Issue 3 (7-2024)                   jhehp 2024, 10(3): 118-125 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi A, Mirza Alizadeh A, Azimzadeh N, Moradpey S, Abolhassani M, Aminzare M, et al . Technical Characteristics and Nutritional Values of Einkorn Wheat: A Literature Review. jhehp 2024; 10 (3) :118-125
URL: http://jhehp.zums.ac.ir/article-1-633-en.html
1- Department of Food Science and Technology, Takestan Branch, Islamic Azad University, Qazvin, Iran.
2- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
3- Student Research Committee, Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
4- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran.
5- Department of Food Science and Technology, Administration of East Azerbaijan Standard, Tabriz, Iran.
Abstract:   (462 Views)
The first domestic wheat variety to be monocot diploid is einkorn wheat. A comprehensive evaluation of einkorn wheat's quality reveals that, in comparison to other polyploid wheat, this ancient wheat offers several dietary benefits. Einkorn wheat-based meals are high in protein, lipids (mostly polyunsaturated fatty acids), fructans, and trace minerals such as iron and zinc, but low in fiber. In terms of nutritional value, einkorn wheat has significantly better nutritional qualities due to its proper concentration of various antioxidant compounds, including carotenoids, tocols (lipid-soluble constituents consisting of tocopherols and tocotrienols), conjugated polyphenols, alkyl resorcinols, and phytosterols, as well as its low beta-amylase and lipoxygenase activity, which reduces the degradation of antioxidants during food processing. Conversely, einkorn wheat exhibits a higher polyphenol oxidase activity and comparatively lower levels of polyphenol, although these characteristics result in fewer adverse effects when compared to other varieties of wheat. However, it should be noted that einkorn wheat is unsuitable for individuals with celiac disease. The current movement in consumer preferences for functional meals suggests that wheat may still be useful for human consumption, particularly in the development of novel, high-quality food  products, and specialty  items.
Full-Text [PDF 1749 kb]   (169 Downloads)    
Type of Study: Review Article | Subject: Food Safety and Hygiene
Received: 2024/05/7 | Accepted: 2024/06/22 | Published: 2024/07/14

References
1. Abdel-All, E., Hucl, P., & Sosulski, F. (1995). Compositional and nutritional characteristics of spring einkorn and spelt wheats. Cereal Chemistry, 72(6). [Google Scholar]
2. Abdel-Haleem, A. M., Seleem, H. A., & Galal, W. K. (2012). Assessment of Kamut® wheat quality. World Journal of Science, Technology and Sustainable Development, 9(3), 194-203. [Crossref] [Google Scholar]
3. Akar, T., Cengiz, M., & Tekin, M. (2019). A comparative study of protein and free amino acid contents in some important ancient wheat lines. Quality Assurance and Safety of Crops & Foods, 11(2), 191-200. [Crossref] [Google Scholar]
4. Andersson, A. A., Kamal-Eldin, A., Fras, A., Boros, D., & Åman, P. (2008). Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9722-9725. [Crossref] [Google Scholar]
5. Angioloni, A., & Collar, C. (2011). Nutritional and functional added value of oat, Kamut®, spelt, rye and buckwheat versus common wheat in breadmaking. Journal of the Science of Food and Agriculture, 91(7), 1283-1292. [Crossref] [Google Scholar]
6. Arzani, A. (2019). Emmer (Triticum turgidum ssp. dicoccum) flour and bread. In Flour and bread and their fortification in health and disease prevention (pp. 89-98). Elsevier. [Crossref] [Google Scholar]
7. Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., . . . & Bouyahya, A. (2022). Health benefits and pharmacological properties of stigmasterol. Antioxidants, 11(10). [Crossref] [Google Scholar]
8. Becker, F. (2013). Tocopherols in wheat and rye. [Google Scholar]
9. Borghi, B., Castagna, R., Corbellini, M., Heun, M., & Salamini, F. (1996). Breadmaking quality of einkorn wheat (Triticum monococcum ssp. monococcum). Cereal Chemistry, 73(2). [Google Scholar]
10. Brandolini, A., Hidalgo, A., & Moscaritolo, S. (2008). Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. Journal of Cereal Science, 47(3), 599-609. [Crossref] [Google Scholar]
11. Brandolini, A., Hidalgo, A., Plizzari, L., & Erba, D. (2011). Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. Journal of Cereal Science, 53(1), 65-72. [Crossref] [Google Scholar]
12. Brandolini, A., Lucisano, M., Mariotti, M., & Hidalgo, A. (2018). A study on the quality of einkorn (Triticum monococcum L. ssp. monococcum) pasta. Journal of Cereal Science, 82, 57-64. [Crossref] [Google Scholar]
13. Brester, G. W., Grant, B., & Boland, M. A. (2009). Marketing organic pasta from big sandy to Rome: It's a long Kamut®. Applied Economic Perspectives and Policy, 31(2), 359-369. [Crossref] [Google Scholar]
14. Corbellini, M., Empilli, S., Vaccino, P., Brandolini, A., Borghi, B., Heun, M., & Salamini, F. (1999). Einkorn characterization for bread and cookie production in relation to protein subunit composition. Cereal Chemistry, 76(5), 727-733. [Crossref] [Google Scholar]
15. Erba, D., Hidalgo, A., Bresciani, J., & Brandolini, A. (2011). Environmental and genotypic influences on trace element and mineral concentrations in whole meal flour of einkorn (Triticum monococcum L. subsp. monococcum). Journal of Cereal Science, 54(2), 250-254. [Crossref] [Google Scholar]
16. Fogarasi, A. L., Kun, S., Tankó, G., Stefanovits-Bányai, É., & Hegyesné-Vecseri, B. (2015). A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chemistry, 167, 1-6. [Crossref] [Google Scholar]
17. Geisslitz, S., Longin, C. F. H., Scherf, K. A., & Koehler, P. (2019). Comparative study on gluten protein composition of ancient (einkorn, emmer and spelt) and modern wheat species (durum and common wheat). Foods, 8(9), 409. [Crossref] [Google Scholar]
18. Hendek Ertop, M. (2019). Comparison of industrial and homemade bulgur produced from einkorn wheat (Triticum monococcum) and durum wheat (Triticum durum): Physicochemical, nutritional and microtextural properties. Journal of Food Processing and Preservation, 43(2), e13863. [Crossref] [Google Scholar]
19. Hidalgo, A., & Brandolini, A. (2010). Tocols stability during bread, water biscuit and pasta processing from wheat flour. Journal of Cereal Science, 52(2), 254-259. [Crossref] [Google Scholar]
20. Hidalgo, A., & Brandolini, A. (2011). Evaluation of heat damage, sugars, amylases and colour in bread from einkorn, durum and bread wheat flour. Journal of Cereal Science, 54(1), 90-97. [Crossref] [Google Scholar]
21. Hidalgo, A., & Brandolini, A. (2014). Nutritional properties of einkorn wheat (Triticum monococcum L.). Journal of the Science of Food and Agriculture, 94(4), 601-612. [Crossref] [Google Scholar]
22. Hidalgo, A., & Brandolini, A. (2019). Nutritional, technological, and health aspects of einkorn flour and bread. In Flour and bread and their fortification in health and disease prevention (pp. 99-110). Elsevier. [Crossref] [Google Scholar]
23. Hidalgo, A., Brandolini, A., Pompei, C., & Piscozzi, R. (2006). Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). Journal of Cereal Science, 44(2), 182-193. [Crossref] [Google Scholar]
24. Hidalgo, A., Brandolini, A., & Ratti, S. (2009). Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. Journal of Agricultural and Food Chemistry, 57(14), 6342-6348. [Crossref] [Google Scholar]
25. Hidalgo, A., Brusco, M., Plizzari, L., & Brandolini, A. (2013). Polyphenol oxidase, alpha-amylase and beta-amylase activities of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-year study. Journal of Cereal Science, 58(1), 51-58. [Crossref] [Google Scholar]
26. Hidalgo, A., Scuppa, S., & Brandolini, A. (2016). Technological quality and chemical composition of puffed grains from einkorn (Triticum monococcum L. subsp. monococcum) and bread wheat (Triticum aestivum L. subsp. aestivum). LWT-Food Science and Technology, 68, 541-548. [Crossref] [Google Scholar]
27. Hoseney, R. C. (1994). Principles of cereal science and technology. American Association of Cereal Chemists (AACC).
28. Jiang, X. L., Tian, J. C., Zhi, H., & Zhang, W. D. (2008). Protein content and amino acid composition in grains of wheat-related species. Agricultural Sciences in China, 7(3), 272-279. [Crossref] [Google Scholar]
29. Johansson, E., Prieto-Linde, M. L., & Larsson, H. (2021). Locally adapted and organically grown landrace and ancient spring cereals-A unique source of minerals in the human diet. Foods, 10(2), 393. [Crossref] [Google Scholar]
30. Jones, P., & Abumweis, S. (2009). Phytosterols as functional food ingredients: Linkages to cardiovascular disease and cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 12, 147-151. [Crossref] [Google Scholar]
31. Kulathunga, J., Reuhs, B. L., Zwinger, S., & Simsek, S. (2021). Comparative study on kernel quality and chemical composition of ancient and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. Foods, 10(4), 761. [Crossref] [Google Scholar]
32. La Gatta, B., Rutigliano, M., Rusco, G., Petrella, G., & Di Luccia, A. (2017). Evidence for different supramolecular arrangements in pasta from durum wheat (Triticum durum) and einkorn (Triticum monococcum) flours. Journal of Cereal Science, 73, 76-83. [Crossref] [Google Scholar]
33. Lachman, J., Hejtmánková, K., & Kotíková, Z. (2013). Tocols and carotenoids of einkorn, emmer and spring wheat varieties: Selection for breeding and production. Journal of Cereal Science, 57(2), 207-214. [Crossref] [Google Scholar]
34. Leenhardt, F., Lyan, B., Rock, E., Boussard, A., Potus, J., Chanliaud, E., & Remesy, C. (2006). Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. European Journal of Agronomy, 25(2), 170-176. [Crossref] [Google Scholar]
35. Li, X., Xin, Y., Mo, Y., Marozik, P., He, T., & Guo, H. (2022). The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules, 27(2), 523. [Crossref] [Google Scholar]
36. Løje, H., Møller, B., Laustsen, A., & Hansen, Å. (2003). Chemical composition, functional properties and sensory profiling of einkorn (Triticum monococcum L.). Journal of Cereal Science, 37(2), 231-240. [Crossref] [Google Scholar]
37. Longin, C. F. H., & Würschum, T. (2016). Back to the future-tapping into ancient grains for food diversity. Trends in Plant Science, 21(9), 731-737. [Crossref] [Google Scholar]
38. Mirza Alizadeh, A., Haj Heidary, R., Tajkey, J., Aminzare, M., & Hejazi, J. (2017). Assessment of wheat flour fortification by premix (iron and folic acid) in flour factories of Zanjan province, Iran, 2016. Journal of Nutritional Sciences and Dietetics. [Google Scholar]
39. Mirza Alizadeh, A., Peivasteh Roudsari, L., Tajdar Oranj, B., Beikzadeh, S., Barani Bonab, H., & Jazaeri, S. (2022). Effect of flour particle size on chemical and rheological properties of wheat flour dough. Iranian Journal of Chemistry and Chemical Engineering, 41(2), 682-694. [Google Scholar]
40. Morrison, W., & Gadan, H. (1987). The amylose and lipid contents of starch granules in developing wheat endosperm. Journal of Cereal Science, 5(3), 263-275. [Crossref] [Google Scholar]
41. Nakov, G., Brandolini, A., Ivanova, N., Dimov, I., & Stamatovska, V. (2018). The effect of einkorn (Triticum monococcum L.) whole meal flour addition on physico-chemical characteristics, biological active compounds and in vitro starch digestion of cookies. Journal of Cereal Science, 83, 116-122. [Crossref] [Google Scholar]
42. Nurmi, T., Nystrom, L., Edelmann, M., Lampi, A. M., & Piironen, V. (2008). Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9710-9715. [Crossref] [Google Scholar]
43. Nyström, L., Paasonen, A., Lampi, A. M., & Piironen, V. (2007). Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye. Journal of Cereal Science, 45(1), 106-115. [Crossref] [Google Scholar]
44. Okot-Kotber, M., Liavoga, A., Yong, K. J., & Bagorogoza, K. (2002). Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropes. Journal of Agricultural and Food Chemistry, 50(8), 2410-2417. [Crossref] [Google Scholar]
45. Petkova, Z., Stoyanova, M., Stankov, S., Fidan, H., Dzhivoderova, M., Pahopoulou, A., . . . & Stoyanova, A. (2019). Comparison of some bioactive components of emmer wheat [Triticum dicoccum (schrank) schübler] cultivars from two different origins grown under the same conditions. Food and Health, 5(3), 160-167. [Crossref] [Google Scholar]
46. Picascia, S., Camarca, A., Malamisura, M., Mandile, R., Galatola, M., Cielo, D., . . . & Troncone, R. (2020). In celiac disease patients the in vivo challenge with the diploid Triticum monococcum elicits a reduced immune response compared to hexaploid wheat. Molecular Nutrition & Food Research, 64(11), 1901032. [Crossref] [Google Scholar]
47. Piironen, V., Edelmann, M., Kariluoto, S., & Bedo, Z. (2008). Folate in wheat genotypes in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9726-9731. [Crossref] [Google Scholar]
48. Pour Abughadareh, A., Alavikia, S., Moghadam, M., Mehrabi, A., & Mazinani, M. (2016). Diversity of agromorphological traits in populations of einkorn wheat (Triticum boeoticum and Triticum urartu) under normal and water deficit stress conditions. Journal of Crop Breeding, 8, 37-46. [Crossref]
49. Quiñones, M., Miguel, M., & Aleixandre, A. (2013). Beneficial effects of polyphenols on cardiovascular disease. Pharmacological Research, 68(1), 125-131. [Crossref] [Google Scholar]
50. Shewry, P. R. (2018). Do ancient types of wheat have health benefits compared with modern bread wheat? Journal of Cereal Science, 79, 469-476. [Crossref] [Google Scholar]
51. Shewry, P. R., & Hey, S. (2015). Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? Journal of Cereal Science, 65, 236-243. [Crossref] [Google Scholar]
52. Stoddard, F. L. (1999). Survey of starch particle‐size distribution in wheat and related species. Cereal Chemistry, 76(1), 145-149. [Crossref] [Google Scholar]
53. Suchowilska, E., Wiwart, M., Borejszo, Z., Packa, D., Kandler, W., & Krska, R. (2009). Discriminant analysis of selected yield components and fatty acid composition of chosen Triticum monococcum, Triticum dicoccum and Triticum spelta accessions. Journal of Cereal Science, 49(2), 310-315. [Crossref] [Google Scholar]
54. Suchowilska, E., Wiwart, M., Kandler, W., & Krska, R. (2012). A comparison of macro-and microelement concentrations in the whole grain of four Triticum species. Plant, Soil and Environment, 58(3), 141-147. [Crossref] [Google Scholar]
55. USDA. (2009). Composition of foods raw, processed, prepared USDA national nutrient database for standard reference, release 22. https://www.ars.usda.gov/ARSUserFiles/80400535/DATA/sr22/sr22_doc.pdf [Google Scholar]
56. Venske, E., Dos Santos, R. S., Busanello, C., Gustafson, P., & Costa de Oliveira, A. (2019). Bread wheat: a role model for plant domestication and breeding. Hereditas, 156, 16. [Crossref] [Google Scholar]
57. Zhao, F. J., Su, Y., Dunham, S., Rakszegi, M., Bedo, Z., McGrath, S., & Shewry, P. (2009). Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 49(2), 290-295. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb