Volume 10, Issue 2 (5-2024)                   jhehp 2024, 10(2): 63-73 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maleki M H, Daneshniya M, Abdolmaleki F. Investigating Antimicrobial Activity and Potential Health-Related Hazards of Titanium Dioxide Nanoparticles as a Food Additive and Constitute of Food Packaging. jhehp 2024; 10 (2) :63-73
URL: http://jhehp.zums.ac.ir/article-1-630-en.html
1- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Student Research Committee, Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy.
3- Department of Food Science and Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
Abstract:   (1394 Views)
Background: Titanium dioxide (TiO2) is employed in various forms, ranging from nano to macro, in food products and packaging to prolong shelf life. However, recent research has shown potential health risks associated with its use. This review investigates the health implications of TiO2 nanoparticles (NPs) in food packaging or additives, while also examining TiO2's antimicrobial properties and related mechanisms.
Methods: The research extensively explored TiO2 NPs' generation methods and antimicrobial potential, especially in the context of food packaging and cosmetics. A systematic search was conducted using Google Scholar, Pub Med, and Web of Science databases to identify relevant sources. A total of 97 sources were selected from 150, without date restrictions. These references, spanning 1972 to 2023, encompass diverse full-text English materials, including reviews, original research, conferences, handbooks, and book chapters.
Results: Nanotechnology, specifically TiO2 NPs, enhances food packaging for safety and sustainability. Innovations such as reinforced, active, and biodegradable packaging have emerged to address industry challenges, improving mechanical performance and extending shelf life. However, despite the benefits, concerns about the health and environmental implications of TiO2 NPs have prompted regulatory reassessment.
Conclusion: Addressing concerns about TiO2 NPs in food packaging is crucial due to potential health and environmental risks. The recent ban imposed by the European Union on TiO2 (E171) underscores the need for ongoing research and scrutiny to ensure the safe integration of nanotechnology in food packaging.
Full-Text [PDF 1252 kb]   (475 Downloads)    
Type of Study: Review Article | Subject: Food Safety and Hygiene
Received: 2024/03/4 | Accepted: 2024/04/18 | Published: 2024/05/4

References
1. Abdolmaleki, F., Shirkhorshidi, S., & Daneshniya, M. (2023). Investigating the characteristics of basil seed gum-based film enriched with Echinophora Platyloba extract and its preservative effect on the quality of silver carp. Journal of Research & Innovation in Food Science & Technology, 11(4). [Google Scholar]
2. An, J., Zhang, M., Wang, S., & Tang, J. (2008). Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Science and Technology, 41(6), 1100-1107. [Crossref] [Google Scholar]
3. Adams, L. K., Lyon, D. Y., & Alvarez, P. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40(19), 3527-3532. [Crossref] [Google Scholar]
4. Ahmadi, Z., Ashjari, M., Hosseini, R., & Nia, J. R. (2009). Synthesis and morphological study of nanoparticles Ag/TiO2 ceramic and bactericidal investigation of Polypropylene-Ag/TiO2 composite. Journal of Inorganic and Organometallic Polymers and Materials, 19, 322-327. [Crossref] [Google Scholar]
5. Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES). (2017). Avis relatif à une demande d’avis relatif à l’exposition alimentaire aux nanoparticules de dioxyde de titane.
6. Arrêté du 17 avril 2019 portant suspension de la mise sur le marché des denrées contenant l’additif e 171 (dioxyde de titane-TiO2). (2020). https://www.legifrance.gouv.fr/loda/id/JORFTEXT000038410047/.
7. Boutillier, S., Fourmentin, S., & Laperche, B. (2022). History of titanium dioxide regulation as a food additive: a review. Environmental Chemistry Letters, 1-17. [Crossref] [Google Scholar]
8. Bodaghi, H., Mostofi, Y., Oromiehie, A., Zamani, Z., Ghanbarzadeh, B., Costa, C., ... & Del Nobile, M. A. (2013). Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Science and Technology, 50(2), 702-706. [Crossref] [Google Scholar]
9. Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., ... & Oberdorster, E. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle and fibre toxicology, 3, 1-35. [Crossref] [Google Scholar]
10. Bettini, S., Boutet-Robinet, E., Cartier, C., Coméra, C., Gaultier, E., Dupuy, J., ... & Houdeau, E. (2017). Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 7(1), 40373. [Crossref] [Google Scholar]
11. Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60. [Crossref] [Google Scholar]
12. Catalano, R., Labille, J., Gaglio, D., Alijagic, A., Napodano, E., Slomberg, D., ... & Pinsino, A. (2020). Safety evaluation of TiO2 nanoparticle-based sunscreen UV filters on the development and the immunological state of the sea urchin Paracentrotus lividus. Nanomaterials, 10(11), 2102. [Crossref] [Google Scholar]
13. Chaudhary, P., Fatima, F., & Kumar, A. (2020). Relevance of nanomaterials in food packaging and its advanced future prospects. Journal of Inorganic and Organometallic Polymers and Materials, 30(12), 5180-5192. [Crossref] [Google Scholar]
14. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., ... & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25(3), 241-258. [Crossref] [Google Scholar]
15. Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. [Crossref] [Google Scholar]
16. Cheremisinoff, P. (1997). Handbook of engineering polymeric materials. CRC Press. [Article] [Crossref]
17. Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2), 33-177. [Crossref] [Google Scholar]
18. Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: from field to plate. Food Research International, 69, 381-400. [Crossref] [Google Scholar]
19. Daneshniya, M., Maleki, M. H., Amini, F., Behrouzian, M., & Latifi, Z. (2020). Positive and negative aspects of nanocomposites utilization in food packaging. 3rd International Congress of Science, Engineering and Technology, 21.
20. Daneshniya, M., Maleki, M. H., Mohammadi, M. A., Ahangarian, K., Kondeskalaei, V. J., & Alavi, H. (2021). Antioxidant and antimicrobial activity of ferula species' essential oils and plant extracts and their application as the natural food preservatives. South Asian Research Journal of Natural Products, 4(3), 1-23. [Article]
21. Ding, L., Li, X., Hu, L., Zhang, Y., Jiang, Y., Mao, Z., ... & Sui, X. (2020). A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers, 233, 115859. [Crossref] [Google Scholar]
22. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. [Crossref] [Google Scholar]
23. Daneshniya, M., Maleki, M. H., Ali Mohammadi, M., Jalilvand Nezhad, H., Keshavarz Bahadori, N., & Latifi, Z. (2020). Investigating the application of silver nanoparticles in active food packaging: antimicrobial properties and synthesis methods. Chemistry Research Journal, 5(3), 28-44. [Google Scholar]
24. Dastjerdi, R., Mojtahedi, M. R. M., & Shoshtari, A. M. (2008). Investigating the effect of various blend ratios of prepared masterbatch containing Ag/TiO2 nanocomposite on the properties of bioactive continuous filament yarns. Fibers and Polymers, 9, 727-734. [Crossref] [Google Scholar]
25. Daneshniya, M., Maleki, M. H., Nezhad, H. J., Jalali, V., & Behrouzian, M. (2021b). Application of titanium dioxide (TiO2) nanoparticles in packaging and coating of food products. 5th International Congress of Developing Agriculture, Natural Resources, Environment and Tourism of Iran.
26. Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5-18. [Crossref] [Google Scholar]
27. Dworniczek, E., Franiczek, R., Kowal, K., Buzalewicz, I., Podbielska, H., & Tofail, S. A. (2016). Photocatalytic and antimicrobial activity of titania nanoparticles. Electrically Active Materials for Medical Devices, 193-208. [Crossref] [Google Scholar]
28. Dudefoi, W., Terrisse, H., Popa, A. F., Gautron, E., Humbert, B., & Ropers, M. H. (2018). Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums. Food Additives & Contaminants: Part A, 35(2), 211-221. [Crossref] [Google Scholar]
29. Emamifar, A. (2011). Applications of antimicrobial polymer nanocomposites in food packaging. Advances in Nanocomposite Technology, 299-318. [Crossref] [Google Scholar]
30. Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742-748. [Crossref] [Google Scholar]
31. Emamhadi, M. A., Sarafraz, M., Akbari, M., Fakhri, Y., Linh, N. T. T., & Khaneghah, A. M. (2020). Nanomaterials for food packaging applications: A systematic review. Food and Chemical Toxicology, 146, 111825. [Crossref] [Google Scholar]
32. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). (2016). Re‐evaluation of titanium dioxide (E 171) as a food additive. EFSA Journal, 14(9), e04545. [Article] [Crossref]
33. European :union:. (2022). Titanium dioxide banned as a food additive in the EU, E42022-0011. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Titanium%20Dioxide%20Banned%20as%20a%20Food%20Additive%20in%20the%20EU_Brussels%20USEU_European%20:union:_E42022-0011.pdf.
34. Fernández, A., Soriano, E., López-Carballo, G., Picouet, P., Lloret, E., Gavara, R., & Hernández-Muñoz, P. (2009). Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Research International, 42(8), 1105-1112. [Crossref] [Google Scholar]
35. Frank, A., Leonard, H., Robert, L., Joseph, A., & Dennis, J. (2002). Encyclopedia of polymer science and technology. John Wiley & Sons. [Article]
36. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38. [Crossref] [Google Scholar]
37. Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. [Crossref] [Google Scholar]
38. Fronzi, M., Daly, W., & Nolan, M. (2016). Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: oxygen vacancy formation and CO2 interaction. Applied Catalysis A: General, 521, 240-249. [Crossref] [Google Scholar]
39. Grätzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 44(20), 6841-6851. [Crossref] [Google Scholar]
40. Gao, Y., Li, T., Duan, S., Lyu, L., Li, Y., Xu, L., & Wang, Y. (2021). Impact of titanium dioxide nanoparticles on intestinal community in 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis mice and the intervention effect of vitamin E. Nanoscale, 13(3), 1842-1862. [Crossref] [Google Scholar]
41. Geiss, O., Ponti, J., Senaldi, C., Bianchi, I., Mehn, D., Barrero, J., ... & Anklam, E. (2020). Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Additives & Contaminants: Part A, 37(2), 239-253. [Crossref] [Google Scholar]
42. Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161-181. [Crossref] [Google Scholar]
43. Hrnjak-Murgic, Z. (2015). Nanoparticles in active polymer food packaging. Smithers Pira. [Article]
44. Hanaor, D. A., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46, 855-874. [Crossref] [Google Scholar]
45. Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 44(12R), 8269. [Crossref] [Google Scholar]
46. Hou, X., Ma, H., Liu, F., Deng, J., Ai, Y., Zhao, X., ... & Liao, B. (2015). Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. Journal of Hazardous Materials, 299, 59-66. [Crossref] [Google Scholar]
47. Han, W., Yu, Y., Li, N., & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225. [Crossref] [Google Scholar]
48. Jin, T., & Gurtler, J. B. (2011). Inactivation of Salmonella in liquid egg albumen by antimicrobial bottle coatings infused with allyl isothiocyanate, nisin and zinc oxide nanoparticles. Journal of Applied Microbiology, 110(3), 704-712. [Crossref] [Google Scholar]
49. Jovanović, B. (2015). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10-20. [Crossref] [Google Scholar]
50. Jain, A., & Vaya, D. (2017). Photocatalytic activity of TiO2 nanomaterial. Journal of the Chilean Chemical Society, 62(4), 3683-3690. [Crossref] [Google Scholar]
51. Jovanović, B., Jovanović, N., Cvetković, V. J., Matić, S., Stanić, S., Whitley, E. M., & Mitrović, T. L. (2018). The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster-a 20 generation dietary exposure experiment. Scientific Reports, 8(1), 17922. [Crossref] [Google Scholar]
52. Kuswandi, B., & Moradi, M. (2019). Improvement of food packaging based on functional nanomaterial. Nanotechnology: Applications in Energy, Drug and Food, 309-344. [Crossref] [Google Scholar]
53. Kirwan, M. J., & Strawbridge, J. W. (2003). Plastics in food packaging. Food Packaging Technology, 1, 174-240. [Google Scholar]
54. Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. [Crossref] [Google Scholar]
55. Kamat, P. V. (2011). Dominance of metal oxides in the era of nanotechnology. The Journal of Physical Chemistry Letters, 2(7), 839-840. [Crossref] [Google Scholar]
56. Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Reviews International, 38(4), 537-565. [Crossref] [Google Scholar]
57. Kraśniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-based materials containing silver nanoparticles as active packaging for food applications-a review. International Journal of Molecular Sciences, 21(3), 698. [Crossref] [Google Scholar]
58. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49(1), 1-14. [Crossref] [Google Scholar]
59. Kaplan, R., Erjavec, B., Dražić, G., Grdadolnik, J., & Pintar, A. (2016). Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Applied Catalysis B: Environmental, 181, 465-474. [Crossref] [Google Scholar]
60. Latifi, Z., Ghafuri, Z., Manochehri, S., Khaki Arani, S., Daneshniya, M., Roozbeh Nasiraie, L., Jafarian, S. (2021). Effect of using Hydroxy propyl methyl cellulose with extract of royal oil (Lepidium Sativum) in reducing oil absorption and quality of fried common carp fish fillet (Cyprinus Carpio). Journal of Food Technology and Nutrition, 125-39. [Google Scholar]
61. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 42(18), 4591-4602. [Crossref] [Google Scholar]
62. Li, W., Li, B., Meng, M., Cui, Y., Wu, Y., Zhang, Y., ... & Feng, Y. (2019). Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Applied Surface Science, 487, 1008-1017. [Crossref] [Google Scholar]
63. Lungu, M., Gavriliu, Ş., Enescu, E., Ion, I., Brătulescu, A., Mihăescu, G., ... & Chifiriuc, M. C. (2014). Silver-titanium dioxide nanocomposites as effective antimicrobial and antibiofilm agents. Journal of Nanoparticle Research, 16, 1-15. [Crossref] [Google Scholar]
64. Myszka, K., Leja, K., & Majcher, M. (2019). A current opinion on the antimicrobial importance of popular pepper essential oil and its application in food industry. Journal of Essential Oil Research, 31(1), 1-18. [Crossref] [Google Scholar]
65. Mei, L., & Wang, Q. (2020). Advances in using nanotechnology structuring approaches for improving food packaging. Annual Review of Food Science and Technology, 11, 339-364. [Crossref] [Google Scholar]
66. Maleki, M. H., & Daneshniya, M. (2021). A Review on encapsulation methods, delivery systems and releasement mechanisms of bioactive peptides. 3rd International Congress On Engineering, Technology and Innovation. [Google Scholar]
67. Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products-What do we know about their safety?. Nanomaterials, 10(6), 1110. [Crossref] [Google Scholar]
68. Nie, Y., Luo, F., Wang, L., Yang, T., Shi, L., Li, X., ... & Lin, Q. (2017). Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Food & Function, 8(11), 4028-4041. [Crossref] [Google Scholar]
69. Nobile, M. D., Cannarsi, M., Altieri, C., Sinigaglia, M., Favia, P., Iacoviello, G., & D'Agostino, R. (2004). Effect of Ag‐containing nano‐composite active packaging system on survival of Alicyclobacillus acidoterrestris. Journal of Food Science, 69(8), E379-E383. [Crossref] [Google Scholar]
70. Nabika, H., & Unoura, K. (2016). Interaction between nanoparticles and cell membrane. In Surface chemistry of nanobiomaterials (pp. 231-263). William Andrew Publishing. [Crossref] [Google Scholar]
71. Ni, M., Leung, M. K., Leung, D. Y., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. [Crossref] [Google Scholar]
72. OECD. (2009). Report of an OECD workshop on exposure assessment and exposure mitigation: manufactured nanomaterials. Technical report, OECD environment, health and safety publications, series on the safety of manufactured nanomaterials. Organisation for Economic, 13. [Article]
73. Pirsa, S., & Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798-809. [Crossref] [Google Scholar]
74. Philippopoulos, C. J., & Nikolaki, M. D. (2010). Photocatalytic processes on the oxidation of organic compounds in water. In New trends in technologies. IntechOpen. [Google Scholar]
75. Pozzo, R. L., Baltanas, M. A., & Cassano, A. E. (1997). Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catalysis Today, 39(3), 219-231. [Crossref] [Google Scholar]
76. Pleskova, S. N., Golubeva, I. S., & Verevkin, Y. K. (2016). Bactericidal activity of titanium dioxide ultraviolet-induced films. Materials Science and Engineering: C, 59, 807-817. [Crossref] [Google Scholar]
77. Proquin, H., Rodríguez-Ibarra, C., Moonen, C. G., Urrutia Ortega, I. M., Briedé, J. J., de Kok, T. M., ... & Chirino, Y. I. (2017). Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis, 32(1), 139-149. [Crossref] [Google Scholar]
78. Reidy, D. J., Holmes, J. D., & Morris, M. A. (2006). Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceramics International, 32(3), 235-239. [Crossref] [Google Scholar]
79. Rincón, A. G., & Pulgarin, C. (2007). Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catalysis Today, 124(3-4), 204-214. [Crossref] [Google Scholar]
80. Sun, J., Jiang, H., Wu, H., Tong, C., Pang, J., & Wu, C. (2020). Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids, 107, 105942. [Crossref] [Google Scholar]
81. Sawunyama, P., Jiang, L., Fujishima, A., & Hashimoto, K. (1997). Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. The Journal of Physical Chemistry B, 101(51), 11000-11003. [Crossref] [Google Scholar]
82. Shakeel, M., Jabeen, F., Shabbir, S., Asghar, M. S., Khan, M. S., & Chaudhry, A. S. (2016). Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biological Trace Element Research, 172, 1-36. [Crossref] [Google Scholar]
83. Szentkuti, L. (1997). Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. Journal of Controlled Release, 46(3), 233-242. [Crossref] [Google Scholar]
84. Sharma, S., Sharma, R. K., Gaur, K., Cátala Torres, J. F., Loza-Rosas, S. A., Torres, A., ... & Tinoco, A. D. (2019). Fueling a hot debate on the application of TiO2 nanoparticles in sunscreen. Materials, 12(14), 2317. [Crossref] [Google Scholar]
85. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. [Crossref] [Google Scholar]
86. Thiruvenkatachari, R., Vigneswaran, S., & Moon, I. S. (2008). A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean Journal of Chemical Engineering, 25, 64-72. [Crossref] [Google Scholar]
87. Talamini, L., Gimondi, S., Violatto, M. B., Fiordaliso, F., Pedica, F., Tran, N. L., ... & Diomede, L. (2019). Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology, 13(8), 1087-1101. [Crossref] [Google Scholar]
88. Umadevi, M., Sangari, M., Parimaladevi, R., Sivanantham, A., & Mayandi, J. (2013). Enhanced photocatalytic, antimicrobial activity and photovoltaic characteristics of fluorine doped TiO2 synthesized under ultrasound irradiation. Journal of Fluorine Chemistry, 156, 209-213. [Crossref] [Google Scholar]
89. Winkler, H. C., Notter, T., Meyer, U., & Naegeli, H. (2018). Critical review of the safety assessment of titanium dioxide additives in food. Journal of Nanobiotechnology, 16, 1-19. [Crossref] [Google Scholar]
90. Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., ... & Cai, Z. (2016). TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of the Total Environment, 565, 818-826. [Crossref] [Google Scholar]
91. Wojcieszek, J., Jiménez-Lamana, J., Ruzik, L., Asztemborska, M., Jarosz, M., & Szpunar, J. (2020). Characterization of TiO2 NPs in radish (Raphanus sativus L.) by single-particle ICP-QQQ-MS. Frontiers in Environmental Science, 8, 100. [Crossref] [Google Scholar]
92. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. [Crossref] [Google Scholar]
93. Xing, Y., Li, X., Zhang, L., Xu, Q., Che, Z., Li, W., ... & Li, K. (2012). Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Progress in Organic Coatings, 73(2-3), 219-224. [Crossref] [Google Scholar]
94. Yu, B., Leung, K. M., Guo, Q., Lau, W. M., & Yang, J. (2011). Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology, 22(11), 115603. [Crossref] [Google Scholar]
95. Zou, L., & Zhu, B. (2007). Enhancing the reuse of treated effluent by photocatalytic process. Journal of Advanced Oxidation Technologies, 10(2), 273-281. [Crossref] [Google Scholar]
96. Zhang, W., Zou, L., & Wang, L. (2009). Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 371(1-2), 1-9. [Crossref] [Google Scholar]
97. Zaiter, T., Cornu, R., El Basset, W., Martin, H., Diab, M., & Béduneau, A. (2022). Toxicity assessment of nanoparticles in contact with the skin. Journal of Nanoparticle Research, 24(7), 149. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb