Volume 9, Issue 2 (6-2023)                   jhehp 2023, 9(2): 55-62 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabouri E, Saburi A, Gerami R, Zeraati T, Saburi E, Ghanei M. Computerized Intelligence and Mathematical Models for COVID-19 Diagnosis: A Review. jhehp 2023; 9 (2) :55-62
URL: http://jhehp.zums.ac.ir/article-1-579-en.html
1- Student research committee of Mashhad University of Medical Sciences.
2- Chemical Injuries Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
3- Department of Radiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
4- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Renal transplantation Complications Research Center, internal medicine, Mashhad, Iran.
5- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Abstract:   (1199 Views)
Background: The COVID-19 infection, with its unknown aspects, has posed numerous challenges to public health systems worldwide, rapidly disseminating across borders. In the context of diagnosis, researchers are endeavoring to enhance diagnosis accuracy through improved decision-making processes. The present study aimed to conduct a comprehensive review of the benefits of using computerized intelligence and mathematical models for diagnosing COVID-19 infections.
Methods: We searched for relevant references on the PubMed and Google Scholar databases, with inclusion criteria and search strategies utilized to identify full-text articles in English. A narrative report of our findings was presented based on the synthesis of our data.
Result: The advantageous application of computerized intelligence has been approved in various medical domains, including prevention, diagnosis, and risk assessment.
Conclusion: Collaborative efforts are anticipated to enhance pandemic control with increased precision and reduced costs.
Full-Text [PDF 917 kb]   (431 Downloads)    
Type of Study: Review Article | Subject: Health Promotion
Received: 2023/03/11 | Accepted: 2023/05/1 | Published: 2023/06/10

References
1. Covid CD, Team R, Bialek S, Boundy E, Bowen V, Chow N, et al. Severe Outcomes among Patients with Coronavirus Disease 2019 (COVID-19)-United States, February 12-March 16, 2020. Morb Mortal Wkly Rep. 2020; 69(12): 343. [Crossref] [PubMed]
2. Dong E, Du H, Gardner L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect Dis. 2020; 20(5): 533-4. [Crossref] [PubMed]
3. Pei S, Yamana TK, Kandula S, Galanti M, Shaman J. Burden and Characteristics of COVID-19 in the United States During 2020. Nat. 2021; 598(7880): 338-41. [Crossref] [PubMed]
4. Jafari R, Jonaidi-Jafari N, Dehghanpoor F, Saburi A. Convalescent Plasma Therapy in a Pregnant COVID-19 Patient with a Dramatic Clinical and Imaging Response: A Case Report. World J Radiol. 2020; 12(7): 137. [Crossref] [PubMed]
5. Tripathi A, Pandey AB, Singh AK, Jain A, Tyagi V, Vashist PC. Diagnosis for COVID-19. Assessing COVID-19 and Other Pandemics and Epidemics Using Computational Modelling and Data Analysis. Springer. 2022; 89-111. [Article] [Crossref]
6. Russo A, Minichini C, Starace M, Astorri R, Calo F, Coppola N. Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review. Infect Drug Resist. 2020; 13: 8. [Crossref] [Google Scholar]
7. Puri A, He L, Giri M, Wu C, Zhao Q. Comparison of Comorbidities Among Severe and Non‐Severe COVID‐19 Patients in Asian Versus Non‐Asian Populations: A Systematic Review and Meta‐Analysis. Nurs Open. 2022; 9(1): 733-51. [Crossref] [Google Scholar]
8. Sokolski M, Reszka K, Suchocki T, Adamik B, Doroszko A, Drobnik J, et al. History of Heart Failure in Patients Hospitalized Due to COVID-19: Relevant Factor of In-Hospital Complications and All-Cause Mortality up to Six Months. J Clin Med. 2022; 11(1): 241. [Crossref] [Google Scholar]
9. Zheng KI, Feng G, Liu WY, Targher G, Byrne CD, Zheng MH. Extrapulmonary Complications of COVID‐19: A Multisystem Disease?. J Med Virol. 2021; 93(1): 323-35. [Crossref] [Google Scholar]
10. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020; 324(8): 782-93. [Crossref] [PubMed]
11. An X, Xiao L, Yang X, Tang X, Lai F, Liang X-H. Economic Burden of Public Health Care and Hospitalisation Associated with COVID-19 in China. Public Health. 2022; 203: 65-74. [Crossref] [Google Scholar]
12. Mishra V. Factors Affecting the Adoption of Telemedicine During COVID-19. Indian J Public Health. 2020; 64(6): 234. [Crossref] [Google Scholar]
13. Hall AG, Kim DH, Rainey C, Singh JA. Telemedicine Including Video-Based Visits in Rheumatology in COVID-19 Pandemic: Not Yet Ideal. J Clin Rheumatol. 2022; 28(1): e292-3. [Crossref] [Google Scholar]
14. Deng Y, You C, Liu Y, Qin J, Zhou XH. Estimation of Incubation Period and Generation Time Based on Observed Length‐Biased Epidemic Cohort with Censoring for COVID‐19 Outbreak in China. Biom. 2021; 77(3): 929-41. [Crossref] [Google Scholar]
15. Jafarpour S, Abedini M, Eghbal F, Saburi A. The First Presentation of Pediatric COVID-19 with Diabetic Ketoacidosis. Int J Travel Med Glob Health. 2020; 8: 2. [Crossref] [Google Scholar]
16. Luciano TM, Halah MP, Sarti MT, Floriano VG, Fonseca BA, Liberatore Junior RD, et al. DKA and New-Onset Type 1 Diabetes in Brazilian Children and Adolescents During the COVID-19 Pandemic. Arch Endocrinol Metab. 2022. [Crossref] [Google Scholar]
17. Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B. Laboratory Diagnosis of Coronavirus Disease-2019 (COVID-2019). Clin Chim Acta. 2020; 510: 11. [Crossref] [Google Scholar]
18. Ramírez AM, Cruz ND, Gutiérrez-Cobos A, Serrano DA, Álvaro IG, Vallejo ER, et al. Evaluation of Two RT-PCR Techniques for SARS-CoV-2 RNA Detection in Serum for Microbiological Diagnosis. J Virol Methods. 2022; 300: 114411. [Crossref] [Google Scholar]
19. Ahmed W, Simpson SL, Bertsch PM, Bibby K, Bivins A, Blackall LL, et al. Minimizing Errors in RT-PCR Detection and Quantification of SARS-CoV-2 RNA for Wastewater Surveillance. Sci Total Environ. 2022; 805: 149877. [Crossref] [PubMed]
20. Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B. Laboratory Diagnosis of Coronavirus Disease-2019 (COVID-19). Clin Chim Acta. 2020; 510: 35. [Crossref] [Google Scholar]
21. Steinlin-Schopfer J, Barbani MT, Kamgang R, Zwahlen M, Suter-Riniker F, Dijkman R. Evaluation of the Roche Antigen Rapid Test and a Cell Culture-Based Assay Compared to rRT-PCR for the Detection of SARS-CoV-2: A Contribution to the Discussion about SARS-CoV-2 Diagnostic Tests and Contagiousness. J Clin Virol Plus. 2021; 1(1-2): 100020. [Crossref] [Google Scholar]
22. Sylvia SC, Vinoth S. A Study of D-Dimer Levels in Acute Febrile Non Covid Conditions in a Tertiary Care Hospital. J Pharm Res Int. 2021; 33(48A): 137-41. [Article] [Crossref]
23. Mundodan J, Hasnain S, Khogali H, Al Bayat SS, Ali D, Alateeg S, et al. Validation of Rapid Antibody (IgG-IgM) Test Kit for SARS COV-2 Infection in Qatar. J Public Health Res. 2022; 11(1): jphr-2021. [Crossref] [Google Scholar]
24. Jafari R, Colletti PM, Saburi A. Rings of Saturn Appearance: A Unique Finding in a Case of COVID-19 Pneumonitis. Diagn Interv Radiol. 2021; 27(1): 154. [Crossref] [Google Scholar]
25. Cozzi D, Cavigli E, Moroni C, Smorchkova O, Zantonelli G, Pradella S, et al. Ground-Glass Opacity (GGO): A Review of the Differential Diagnosis in the Era of COVID-19. Jpn J Radiol. 2021; 1-12. [Crossref] [Google Scholar]
26. Zhou X, Pu Y, Zhang D, Xia Y, Guan Y, Liu S, et al. CT Findings and Dynamic Imaging Changes of COVID-19 in 2908 Patients: A Systematic Review and Meta-Analysis. Acta Radiol. 2022; 63(3): 291-310. [Crossref] [Google Scholar]
27. Dai WC, Zhang HW, Yu J, Xu HJ, Chen H, Luo SP, et al. CT Imaging and Differential Diagnosis of COVID-19. Can Assoc Radiol J. 2020; 71: 5. [Crossref] [Google Scholar]
28. Gans JS, Goldfarb A, Agrawal AK, Sennik S, Stein J, Rosella L. False-Positive Results in Rapid Antigen Tests for SARS-CoV-2. JAMA. 2022; 327(5): 485-6. [Crossref] [Google Scholar]
29. Da Silva SJ, Silva CT, Guarines KM, Mendes RP, Pardee K, Kohl A, et al. Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infect Dis. 2020; 6(9): 2319-36. [Crossref] [Google Scholar]
30. Song JY, Yun JG, Noh JY, Cheong HJ, Kim WJ. COVID-19 in South Korea- Challenges of Subclinical Manifestations. N Engl J Med. 2020; 382(19): 1858-9. [Crossref] [Google Scholar]
31. Payvar B, Azami S, Khodadadegan M, Saburi E, Sahab Negah S, Hajali V. Clinical Symptoms of COVID-19 Patients Admitted to Hazrat Musa Ibne Jafar Hospital in Quchan City. Navid No. 2022; 25(83): 11-7. [Google Scholar]
32. Caramello V, Macciotta A, Bar F, Mussa A, De Leo AM, De Salve AV, et al. The Broad Spectrum of COVID-Like Patients Initially Negative at RT-PCR Testing: A Cohort Study. BMC Public Health. 2022; 22(1): 1-12. [Crossref] [Google Scholar]
33. Arab F, Mollazadeh S, Ghayourbabaei F, Moghbeli M, Saburi E. The Role of HLA Genotypes in Understanding the Pathogenesis of Severe COVID-19. Egypt J Med Hum Genet. 2023; 24(1): 14. [Crossref] [Google Scholar]
34. Turcato G, Zaboli A, Pfeifer N, Sibilio S, Tezza G, Bonora A, et al. Rapid Antigen Test to Identify COVID-19 Infected Patients with and without Symptoms Admitted to the Emergency Department. Am J Emerg Med. 2022; 51: 92-7. [Crossref] [Google Scholar]
35. Gupta M, Paul P, Roy A. A Study on Cloud Employment Tracking System. International Conference on Emerging Wireless Communication Technologies and Information Security: EWCIS 2020. 2021; 353-61. [Crossref] [Google Scholar]
36. Ogata T, Tanaka H. Long Diagnostic Delay with Unknown Transmission Route Inversely Correlates with the Subsequent Doubling Time of Coronavirus Disease 2019 in Japan, February-March 2020. Int J Environ Res Public Health. 2021; 18(7): 3377. [Crossref] [Google Scholar]
37. Rong X, Yang L, Chu H, Fan M. Effect of Delay in Diagnosis on Transmission of COVID-19. Math Biosci Eng. 2020; 17(3): 2725-40. [Crossref] [Google Scholar]
38. Bal A, Pozzetto B, Trabaud MA, Escuret V, Rabilloud M, Langlois-Jacques C, et al. Evaluation of High-Throughput SARS-CoV-2 Serological Assays in a Longitudinal Cohort of Patients with Mild COVID-19: Clinical Sensitivity, Specificity, and Association with Virus Neutralization Test. Clin Chem. 2021; 67(5): 742-52. [Crossref] [Google Scholar]
39. Wieland E. Immunological Biomarkers in Blood to Monitor the Course and Therapeutic Outcomes of COVID-19. Ther Drug Monit. 2022; 44(1): 148-65. [Crossref] [Google Scholar]
40. Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic Techniques for COVID-19 and New Developments. Talanta. 2020; 220: 121392. [Crossref] [Google Scholar]
41. Jafari R, Maghsoudi H, Saburi A. A Unique Feature of COVID-19 Infection in Chest CT; “Pulmonary Target” Appearance. Acad Radiol. 2021; 28(1): 146-7. [Crossref] [Google Scholar]
42. Saburi A, Schoepf UJ, Ulversoy KA, Jafari R, Eghbal F, Ghanei M. From Radiological Manifestations to Pulmonary Pathogenesis of COVID-19: A Bench to Bedside Review. Radiol Res Pract. 2020; 2020: 8825761. [Crossref] [Google Scholar]
43. Canario DA, Fromke E, Patetta MA, Eltilib MT, Reyes-Gonzalez JP, Rodriguez GC, et al. Using Artificial Intelligence to Risk Stratify COVID-19 Patients Based on Chest X-Ray Findings. Intell Based Med. 2022: 100049. [Crossref] [Google Scholar]
44. Trick AY, Chen FE, Chen L, Lee PW, Hasnain AC, Mostafa HH, et al. Point‐of‐Care Platform for Rapid Multiplexed Detection of SARS‐CoV‐2 Variants and Respiratory Pathogens. Adv Mater Technol. 2022: 2101013. [Crossref] [Google Scholar]
45. Arab F, Jafari Rad M, Esmaeili SA, Mirhosseini A, Moharreri M, Saburi E. Investigation of Polymorphisms of ACEII Gene in People with Coronavirus with Severe and Mild Symptoms or Asymptomatic. Int J Travel Med Glob Health. 2022; 10(3): 122-6. [Crossref] [Google Scholar]
46. Feng C, Wang L, Chen X, Zhai Y, Zhu F, Chen H, et al. A Novel Triage Tool of Artificial Intelligence-Assisted Diagnosis Aid System for Suspected COVID-19 Pneumonia in Fever Clinics. MedRxiv. 2021; 2020-03. [Crossref] [Google Scholar]
47. Kim CK, Choi JW, Jiao Z, Wang D, Wu J, Yi TY, et al. An Automated COVID-19 Triage Pipeline Using Artificial Intelligence Based on Chest Radiographs and Clinical Data. NPJ Digit Med. 2022; 5(1): 1-9. [Crossref] [Google Scholar]
48. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction Models for Diagnosis and Prognosis of COVID-19: Systematic Review and Critical Appraisal. BMJ. 2020; 369. [Google Scholar]
49. Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol. 2020; 58(6): e00512-20. [Crossref] [Google Scholar]
50. Premarathna IH, Srivastava HM, Juman ZA, AlArjani A, Uddin MS, Sana SS. Mathematical Modeling Approach to Predict COVID-19 Infected People in Sri Lanka. AIMS Math. 2022; 7(3): 4672-99. [Crossref] [Google Scholar]
51. Duan XC, Li XZ, Martcheva M, Yuan S. Using an Age-Structured COVID-19 Epidemic Model and Data to Model Virulence Evolution in Wuhan, China. J Biol Dyn. 2022; 16(1): 14-28. [Crossref] [Google Scholar]
52. Shen YT, Chen L, Yue WW, Xu HX. Digital Technology-Based Telemedicine for the COVID-19 Pandemic. Front Med. 2021; 8: 933. [Crossref] [Google Scholar]
53. Jafari R, Jonaidi-Jafari N, Dehghanpoor F, Saburi A. Convelescent Plasma Therapy in a Pregnant COVID-19 Patient with a Dramatic Clinical and Imaging Response: A Case Report. World J Radiol. 2020; 12: 11. [Crossref] [Google Scholar]
54. Würstle S, Erber J, Hanselmann M, Hoffmann D, Werfel S, Hering S, et al. A Telemedicine-Guided Self-Collection Approach for PCR-Based SARS-CoV-2 Testing: Comparative Study. JMIR Form Res. 2022; 6(1): e32564. [Crossref] [Google Scholar]
55. Hanson KE, Caliendo AM, Arias CA, Englund JA, Lee MJ, Loeb M, et al. Infectious Disease Scoiety of Amrica Guidelines on the Diagnosis of Coronavirus Disease 2019. Clin Infect Dis. 2020. [Crossref] [Google Scholar]
56. White J, Byles J, Walley T. The Qualitative Experience of Telehealth Access and Clinical Encounters in Australian Healthcare During COVID-19: Implications for Policy. Health Res Policy Syst. 2022; 20(1): 1-10. [Crossref] [Google Scholar]
57. Murillo-Villanueva K, Velazquez-Hernandez B, Jacome-Mondragon JA, Cervantes-Llamas JJ, Talavera JO. COVID-19 Disease Progression According to Initial Symptoms. A Telemedicine Cohort Study. MedRxiv. 2022; 2022-01. [Crossref] [Google Scholar]
58. Rezayi S, Ghazisaeedi M, Amirazodi S, Saeedi S. Basic Information Requirements for Designing COVID-19 Disease Registration System. Int J Healthc. 2022; 12(1): 41-53. [Crossref] [Google Scholar]
59. O'Keefe JB, Tong EJ, Taylor Jr TH, O’Keefe GA, Tong DC. Use of a Telemedicine Risk Assessment Tool to Predict the Risk of Hospitalization of 496 Outpatients with COVID-19: Retrospective Analysis. JMIR Public Health Surveill. 2021; 7(4): e25075. [Crossref] [Google Scholar]
60. O’Brien H, Tracey MJ, Ottewill C, O’Brien ME, Morgan RK, Costello RW, et al. An Integrated Multidisciplinary Model of COVID-19 Recovery Care. Ir J Med Sci. 2021; 190(2): 461-8. [Crossref] [Google Scholar]
61. Shoaib M, Aqib AI, Bhutta ZA, Pu W, Muzammil I, Naseer MA. Computational Intelligence-Based Diagnosis of COVID-19. Computational Intelligence for COVID-19 and Future Pandemics: Emerging Applications and Strategies. 2022; 229-55. [Crossref] [Google Scholar]
62. Saburi E, Abazari MF, Hassannia H, Mansour RN, Eshaghi-Gorji R, Gheibi M, et al. The Use of Mesenchymal Stem Cells in the Process of Treatment and Tissue Regeneration after Recovery in Patients with Covid-19. Gene. 2021; 777: 145471. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb