1. Ahmadi, Sh. (2020). The importance of silver nanoparticles in human life. Advances in Applied NanoBio-Technologies, 1(1), 5-9. [
Crossref]
2. Al Mashud, M. A., Moinuzzaman, M., Hossain, M. S., Ahmed, S., Ahsan, G., Reza, A., . . . & Jamal, M. A. (2022). Green synthesis of silver nanoparticles using Cinnamomum tamala (Tejpata) leaf and their potential application to control multidrug resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon, 8(7), e09920. [
Crossref]
3. Assadi, F., Amirmoghaddami, H. R., Shamseddin, M., Nedaeei, K., & Heidari, A. (2016). Effect of molybdenum trioxide nanoparticles (MoO3 NPs) on thyroid hormones in female rats. Journal of Human Environment and Health Promotion, 1(4), 189-195. [
Crossref]
4. Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148-154. [
Crossref]
5. Bijari, N. (2023). The utilization of Tribulus terrestris seed extract as a biological source for silver nanoparticle synthesis and evaluating the nanoparticles' antibacterial properties. Modares Journal of Biotechnology, 15(1), 51-65.
6. Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176(1), 1-12. [
Crossref]
7. Dousti, B., Nabipour, F., & Hajiamraei, A. (2019). Green synthesis of silver nanoparticle by using the aqueous extract of Fumaria Parviflora and investigation of their antibacterial and antioxidant activities. Razi Journal of Medical Sciences, 26(6), 105-117.
8. Golabi, F., Doudi, M., & Madani, M. (2019). Antibacterial effects of Agicoat silver crystalline nanofibers on wound infection agents. Journal of Human Environment and Health Promotion, 5(2), 61-65. [
Crossref]
9. Gupta, A., & Silver, S. (1998). Silver as a biocide: Will resistance become a problem? Nature Biotechnology, 16(10), 888. [
Crossref]
10. Husain, Sh., Nandi, A., Simnani, F. Z., Saha, U., Ghosh, A., Sinha, A., . . . & Verma, S. K. (2023). Emerging trends in advanced translational applications of silver nanoparticles: A progressing dawn of nanotechnology. Journal of Functional Biomaterials, 14(1), 47. [
Crossref]
11. Joseph, J., Keren, D. S., Raghavi, R., Mary, S. A., & Aruni, W. (2021). Green synthesis of silver nanoparticles using Phyllanthus amarus seeds and their antibacterial activity assessment. Biomedical and Biotechnology Research Journal (BBRJ), 5(1), 35-38. [
Crossref]
12. Kavoosi, S., & Yaghoubi, H. (2017). Synthesis of silver nanoparticles using green method of plant extract european marjoram (Origanum majorana) and their antibacterial effects. Cellular and Molecular Research, 30(2), 161-173.
13. Kesić, A., Marković, K., Grujović, M., & Marković, Z. (2023). An investigation of the optimal conditions for the green synthesis of silver nanoparticles using an aqueous extract from the Agrimonia eupatoria L. plant. Materials Proceedings, 14(1), 1. [
Crossref]
14. Khazaei, M., & Mirazi, N. (2018). The effect of Agrimonia eupatoria leaf hydroalcoholic extract on carbon tetrachloride induced liver toxicity in male rats. Journal of Advances in Medical and Biomedical Research, 26(114), 84-97.
15. Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99. [
Crossref]
16. Lakkim, V., Reddy, M. C., Pallavali, R. R., Reddy, K. R., Reddy, C. V., Inamuddin, L., . . . & Lomada, D. (2020). Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics, 9(12), 902. [
Crossref]
17. Lara, H. H., Ayala-Núnez, N. V., Ixtepan Turrent, L. D. C., & Rodríguez Padilla, C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(10), 615-621. [
Crossref]
18. Saffari, P., Majd, A., Jonoubi, P., & Najafi, F. (2021). Study of the vegetative structure of Agrimonia eupatoria L. in the in vivo and in vitro plants. Journal of Developmental Biology, 13(1), 53-62.
19. Sohrabi, M., Abbasi, M., & Sadighzadeh, A. (2023). Fabrication and evaluation of electrospun polyacrylonitrile/silver nanofiber membranes for air filtration and antibacterial activity. Polymer Bulletin, 80(5), 5481-5499. [
Crossref]
20. Srikhao, N., Kasemsiri, P., Ounkaew, A., Lorwanishpaisarn, N., Okhawilai, M., Pongsa, U., . . . & Chindaprasirt, P. (2021). Bioactive nanocomposite film based on cassava starch/polyvinyl alcohol containing green synthesized silver nanoparticles. Journal of Polymers and the Environment, 29, 672-684. [
Crossref]
21. Tolouietabar, H., & Hatamnia, A. (2017). Investigation of antibacterial activity of silver nanoparticles synthesized from Scrophularia striata fruit extract. Cell and Tissue Journal, 8(2), 206-213.
22. Ying, Sh., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. [
Crossref]
23. Zhang, J., Yin, Y., Hu, Sh., Wang, G., Tong, Y., Zen, M., . . . & Wang, Y. (2023). Green synthesis of anti-bacterial Nano silver by polysaccharide from Bletilla striata. Inorganics, 11(1), 40. [
Crossref]