Volume 11, Issue 1 (1-2025)                   jhehp 2025, 11(1): 3-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farahmandkia Z, Bakhtshokouhi S, Najafi Saleh H. Interactions between Vehicular Emissions of Platinum Group Elements in Roadside Soils and the Legatum Prosperity Index: A Mini-Review. jhehp 2025; 11 (1) :3-12
URL: http://jhehp.zums.ac.ir/article-1-683-en.html
1- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
2- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Environmental Health Engineering, School of Medical Sciences, Khalkhal Faculty of Medical Sciences, Khalkhal, Iran.
Abstract:   (302 Views)
A catalytic converter mitigates exhaust gas toxicity by transforming harmful emissions into less harmful substances. Platinum group elements (PGEs) are essential components of vehicle exhaust catalysts (VECs) that alleviate environmental pollution. However, the increasing reliance on PGEs in VECs has resulted in the release of platinum (Pt), palladium (Pd), and rhodium (Rh) particles into the environment, contributing to pollution. Research has concentrated on roadside soils in urban areas or near highways, as these locations are close to catalytic converter contamination sources. Studies have indicated that PGE concentrations in roadside soils exceed the average global crustal levels. The Legatum Prosperity Index (LPI) evaluates national prosperity through 12 pillars, including economic quality, investment environment, governance, education, health, enterprise conditions, infrastructure and market access, safety and security, personal freedom, social capital, living conditions, and the natural environment. Based on these dimensions, the LPI categorizes countries into low, middle, and high-welfare groups. It is hypothesized that countries with higher LPI rankings exhibit reduced pollutant emissions, particularly PGEs from automotive sources, compared to those with lower LPI rankings.  This review examines catalytic converters, catalyst classifications, PGE characterization, and their worldwide industrial distribution. It discusses emission sources and soil contamination, emphasizing the relationship between LPI and PGE emissions in countries with differing welfare levels to promote further research on this topic.
Full-Text [PDF 2245 kb]   (114 Downloads)    
Type of Study: Review Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2024/11/2 | Accepted: 2025/01/2 | Published: 2025/01/13

References
1. Alonso, E., Field, F. R., & Kirchain, R. E. (2012). Platinum availability for future automotive technologies. Environmental Science & Technology, 46(23), 12986-12993. [Crossref] [Google Scholar]
2. Alt, F., Eschnauer, H., Mergler, B., Messerschmidt, J., & Tölg, G. (1997). A contribution to the ecology and enology of platinum. Fresenius' Journal of Analytical Chemistry, 357, 1013-1019. [Crossref] [Google Scholar]
3. Angelone , M., Spaziani, F., Cremisini, C., & Salluzzo, A. (2007). Determination of PGE and REE in urban matrices and fingerprinting of traffic emission contamination. In Highway and urban environment: proceedings of the 8th highway and urban environment symposium (pp. 271-281). Springer Netherlands. [Crossref] [Google Scholar]
4. Ash, P. W., Boyd, D. A., Hyde, T. I., Keating, J. L., Randlshofer, G., Rothenbacher, K., . . . & Toner, B. M. (2014). Local structure and speciation of platinum in fresh and road-aged North American sourced vehicle emissions catalysts: An X-ray absorption spectroscopic study. Environmental Science & Technology, 48(7), 3658-3665. [Crossref] [Google Scholar]
5. Bakhtiyari, S., Ranjbar, H., & Ghorbani, S. (2012). Composite index of economic well-being and its measurement for a selection of developing countries. Economic Growth and Development Research, 3(9), 41-58. [Google Scholar]
6. Barefoot, R. (1999). Distribution and speciation of platinum group elements in environmental matrices. TrAC Trends in Analytical Chemistry, 18(11), 702-707. [Crossref] [Google Scholar]
7. Bernardino, C. A., Mahler, C. F., Santelli, R. E., Freire, A. S., Braz, B. F., & Novo, L. A. (2019). Metal accumulation in roadside soils of Rio de Janeiro, Brazil: impact of traffic volume, road age, and urbanization level. Environmental Monitoring and Assessment, 191, 1-14. [Crossref] [Google Scholar]
8. Birke, M., Rauch, U., Stummeyer, J., Lorenz, H., & Keilert, B. (2018). A review of platinum group element (PGE) geochemistry and a study of the changes in PGE contents in the topsoil of Berlin, Germany, between 1992 and 2013. Journal of Geochemical Exploration, 187, 72-96. [Crossref] [Google Scholar]
9. Bocca, B., Caimi, S., Smichowski, P., Gómez, D., & Caroli, S. (2006). Monitoring Pt and Rh in urban aerosols from Buenos Aires, Argentina. Science of the Total Environment, 358(1-3), 255-264. [Crossref] [Google Scholar]
10. Bommi, R., Monika, V., ArockiaKoncy, A. A., & Patra, C. (2019). A surveillance smart system for air pollution monitoring and management. International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, 1407-1418. [Crossref] [Google Scholar]
11. Borgmann, U., Couillard, Y., Doyle, P., & Dixon, D. G. (2005). Toxicity of sixty‐three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental Toxicology and Chemistry: An International Journal, 24(3), 641-652. [Crossref] [Google Scholar]
12. Chen, X., Xia, X., Zhao, Y., & Zhang, P. (2010). Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. Journal of Hazardous Materials, 181(1-3), 640-646. [Crossref] [Google Scholar]
13. Cicchella, D., De Vivo, B., & Lima, A. (2003). Palladium and platinum concentration in soils from the Napoli metropolitan area, Italy: possible effects of catalytic exhausts. Science of the Total Environment, 308(1-3), 121-131. [Crossref] [Google Scholar]
14. Cicchella, D., Fedele, L., De Vivo, B., Albanese, S., & Lima, A. (2008). Platinum group element distribution in the soils from urban areas of the Campania region (Italy). Geochemistry: Exploration, Environment, Analysis, 8(1), 31-40. [Crossref] [Google Scholar]
15. Cicchella, D., Zuzolo, D., Albanese, S., Fedele, L., Di Tota, I., Guagliardi, I., . . . & Lima, A. (2020). Urban soil contamination in Salerno (Italy): concentrations and patterns of major, minor, trace and ultra-trace elements in soils. Journal of Geochemical Exploration, 213, 106519. [Crossref] [Google Scholar]
16. Das, R. N., Madhusoodana, C., Panda, P., & Okada, K. (2002). Evaluation of thermal shock resistance of cordierite honeycombs. Bulletin of Materials Science, 25, 127-132. [Crossref] [Google Scholar]
17. De Silva, S., Ball, A. S., Huynh, T., & Reichman, S. M. (2016). Metal accumulation in roadside soil in Melbourne, Australia: effect of road age, traffic density and vehicular speed. Environmental Pollution, 208, 102-109. [Crossref] [Google Scholar]
18. De Silva, S., Ball, A. S., Indrapala, D. V., & Reichman, S. M. (2021). Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere, 263, 128135. [Crossref] [Google Scholar]
19. Gasser, I., Rybicki, M., & Wollner, W. (2014). Optimal control of the temperature in a catalytic converter. Computers & Mathematics with Applications, 67(8), 1521-1544. [Crossref] [Google Scholar]
20. Gomez, B., Palacios, M. A., Gomez, M., Sanchez, J. L., Morrison, G., Rauch, S., . . . & Wass, U. (2002). Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Science of the Total Environment, 299(1-3), 1-19. [Crossref] [Google Scholar]
21. Hamurcu, M., Özcan, M. M., Dursun, N., & Gezgin, S. (2010). Mineral and heavy metal levels of some fruits grown on the roadsides. Food and Chemical Toxicology, 48(6), 1767-1770. [Crossref] [Google Scholar]
22. Heck, R. M., Farrauto, R. J., & Gulati, S. T. (2016). Automotive catalyst: chapter 6. In Catalytic air pollution control: commercial technology (pp: 101-175). John Wiley & Sons. [Google Scholar]
23. Hwang, H. M., Fiala, M. J., Park, D., & Wade, T. L. (2016). Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. International Journal of Urban Sciences, 20(3), 334-360. [Crossref] [Google Scholar]
24. Jackson, M. T., Sampson, J., & Prichard, H. M. (2007). Platinum and palladium variations through the urban environment: evidence from 11 sample types from Sheffield, UK. Science of the Total Environment, 385(1-3), 117-131. [Crossref] [Google Scholar]
25. Jafari Samimi, A., & Ahmadpour, S. M. (2011). Investigating the relationship between environmental performance index and economic growth in developed countries. Environmental and Energy Economics Quarterly, 1(1), 55-72.
26. Jarvis, K. E., Parry, S. J., & Piper, J. M. (2001). Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment. Environmental Science & Technology, 35(6), 1031-1036. [Crossref] [Google Scholar]
27. Komendova, R., & Jezek, S. (2019). The distribution of platinum in the environment in large cities: a model study from Brno, Czech Republic. International Journal of Environmental Science and Technology, 16, 3109-3116. [Crossref] [Google Scholar]
28. Ladonin, D. (2018). Platinum-group elements in soils and street dust of the southeastern administrative district of Moscow. Eurasian Soil Science, 51, 268-276. [Crossref] [Google Scholar]
29. Le Bras, S., Deniau, H., Bogey, C., & Daviller, G. (2017). Development of compressible large-eddy simulations combining high-order schemes and wall modeling. AIAA Journal, 55(4), 1152-1163. [Crossref] [Google Scholar]
30. Lee, H. Y., Chon, H. T., Sager, M., & Marton, L. (2012). Platinum pollution in road dust, roadside soils, and tree barks in Seoul, Korea. Environmental Geochemistry and Health, 34, 5-12. [Crossref] [Google Scholar]
31. Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dust in Hong Kong. Applied Geochemistry, 16(11-12), 1361-1368. [Crossref] [Google Scholar]
32. Liu, Y., Wang, Z., Zhang, L., Tian, F., & Liu, C. (2015). Spatial and temporal distribution of platinum group elements (PGEs) in roadside soils from Shanghai and Urumqi, China. Journal of Soils and Sediments, 15, 1947-1959. [Crossref] [Google Scholar]
33. Lyubomirova, V., & Djingova, R. (2015). Accumulation and distribution of Pt and Pd in roadside dust, soil and vegetation in Bulgaria. Platinum Metals in the Environment, 243-255. [Crossref] [Google Scholar]
34. Mattey, J. (2022). PGM Market Report May 2022. https://www.prnewswire.com/in/news-releases/johnson-matthey publishes-latest-pgm-market-report-2022-887951524.html
35. Mehnatfar, Y., & Ghobadi, N. (2015). The effect of environmental performance index on economic growth using panel data The first national conference on geography, tourism, natural resources and sustainable development.
36. Mihaljevič, M., Galušková, I., Strnad, L., & Majer, V. (2013). Distribution of platinum group elements in urban soils, comparison of historically different large cities Prague and Ostrava, Czech Republic. Journal of Geochemical Exploration, 124, 212-217. [Crossref] [Google Scholar]
37. Mitra, A., & Sen, I. S. (2017). Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: emerging environmental contamination. Geochimica et Cosmochimica Acta, 216, 417-432. [Crossref] [Google Scholar]
38. Moldovan, M., Palacios, M. A., Gomez, M. M., Morrison, G., Rauch, S., McLeod, C., . . . & Santamarıa, J. (2002). Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Science of the Total Environment, 296(1-3), 199-208. [Crossref] [Google Scholar]
39. Murat, Ö., ÖZEN, S. A., & ÇEVi, K. U. (2021). Vehicular and industrial sources of PGEs, Au and Ce in surface soil and roadside soils and dusts from two cities of Turkey. Sakarya University Journal of Science, 25(2), 484-497. [Crossref] [Google Scholar]
40. Οικονόμου-Ηλιοπούλου, Μ., & Σφεντόνη, Τ. (2010). Environmental impact of Pt, Pd, Rh and Au from catalytic converters along roadsides: the case of Attica, Greece. Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 100, 47-54. [Google Scholar]
41. Omrani, M., Goriaux, M., Liu, Y., Martinet, S., Jean-Soro, L., & Ruban, V. (2020). Platinum group elements study in automobile catalysts and exhaust gas samples. Environmental Pollution, 257, 113477. [Crossref] [Google Scholar]
42. Orecchio, S., & Amorello, D. (2011). Platinum levels in urban soils from Palermo (Italy); analytical method using voltammetry. Microchemical Journal, 99(2), 283-288. [Crossref] [Google Scholar]
43. Osterauer, R., Haus, N., Sures, B., & Köhler, H. R. (2009). Uptake of platinum by zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis) and resulting effects on early embryogenesis. Chemosphere, 77(7), 975-982. [Crossref] [Google Scholar]
44. Palacios, M. A., Gomez, M. M., Moldovan, M., Morrison, G., Rauch, S., McLeod, C., . . . & Torrens, J. M. (2000). Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Science of the Total Environment, 257(1), 1-15. [Crossref] [Google Scholar]
45. Pan, S., Zhang, G., Sun, Y., & Chakraborty, P. (2009). Accumulating characteristics of platinum group elements (PGE) in urban environments, China. Science of the Total Environment, 407(14), 4248-4252. [Crossref] [Google Scholar]
46. Park, J. W., Hu, Z., Gao, S., Campbell, I. H., & Gong, H. (2012). Platinum group element abundances in the upper continental crust revisited-new constraints from analyses of Chinese loess. Geochimica et Cosmochimica Acta, 93, 63-76. [Crossref] [Google Scholar]
47. Pazhouyan, J., & Moradhasel, N. (2007). Investigating the impact of economic growth on air pollution. Economic Research Quarterly, 4, 141-160.
48. Qi, L., Zhou, M. F., Zhao, Z., Hu, J., & Huang, Y. (2011). The characteristics of automobile catalyst-derived platinum group elements in road dusts and roadside soils: a case study in the pearl river delta region, South China. Environmental Earth Sciences, 64(6), 1683-1692. [Crossref] [Google Scholar]
49. Rauch, S., Hemond, H. F., Barbante, C., Owari, M., Morrison, G. M., Peucker-Ehrenbrink, B., & Wass, U. (2005). Importance of automobile exhaust catalyst emissions for the deposition of platinum, palladium, and rhodium in the northern hemisphere. Environmental Science & Technology, 39(21), 8156-8162. [Crossref] [Google Scholar]
50. Ravindra, K., Bencs, L., & Van Grieken, R. (2004). Platinum group elements in the environment and their health risk. Science of the Total Environment, 318(1-3), 1-43. [Crossref] [Google Scholar]
51. Reith, F., Campbell, S., Ball, A., Pring, A., & Southam, G. (2014). Platinum in earth surface environments. Earth-Science Reviews, 131, 1-21. [Crossref] [Google Scholar]
52. Ribeiro, A., Figueiredo, A., Sarkis, J., Hortellani, M., & Markert, B. (2012). First study on anthropogenic Pt, Pd, and Rh levels in soils from major avenues of São Paulo City, Brazil. Environmental Monitoring and Assessment, 184, 7373-7382. [Crossref] [Google Scholar]
53. Rollinson, H. R. (2014). Using trace element data: chapter 4. In Using geochemical data: evaluation, presentation, interpretation (pp. 150-159). Routledge, Taylor & Francis. [Crossref]
54. Sen, I. S., & Peucker-Ehrenbrink, B. (2012). Anthropogenic disturbance of element cycles at the earth’s surface. Environmental Science & Technology, 46(16), 8601-8609. [Crossref] [Google Scholar]
55. Stigliani, W. M., Doelman, P., Salomons, W., Schulin, R., Smidt, G. R., & Van der Zee, S. E. (1991). Chemical time bombs: predicting the unpredictable. Environment: Science and Policy for Sustainable Development, 33(4), 4-30. [Crossref] [Google Scholar]
56. Sutherland, R. A., Pearson, D. G., & Ottley, C. J. (2008). Grain size partitioning of platinum-group elements in road-deposited sediments: implications for anthropogenic flux estimates from autocatalysts. Environmental Pollution, 151(3), 503-515. [Crossref] [Google Scholar]
57. Prosperity Institute. (2023). The Legatum Centre for National Prosperity. https://index.prosperity.com/about-prosperity/prosperity-index
58. Tsogas, G. Z., Giokas, D. L., Vlessidis, A. G., Aloupi, M., & Angelidis, M. O. (2009). Survey of the distribution and time-dependent increase of platinum-group element accumulation along urban roads in Ioannina (NW Greece). Water, Air, and Soil Pollution, 201, 265-281. [Crossref] [Google Scholar]
59. Turner, A., & Mascorda, L. (2015). Particle-water interactions of platinum-based anticancer drugs in river water and estuarine water. Chemosphere, 119, 415-422. [Crossref] [Google Scholar]
60. Van der Horst, C., Silwana, B., Iwuoha, E., & Somerset, V. (2018). Spectroscopic and voltammetric analysis of platinum group metals in road dust and roadside soil. Environments, 5(11), 120. [Crossref] [Google Scholar]
61. Wang, H., Nie, L., Xu, Y., & Lv, Y. (2017). The effect of highway on heavy metal accumulation in soil in turfy swamps, Northeastern China. Water, Air, & Soil Pollution, 228, 1-14. [Crossref] [Google Scholar]
62. Wang, Y., & Li, X. (2012). Health risk of platinum group elements from automobile catalysts. Procedia Engineering, 45, 1004-1009. [Crossref] [Google Scholar]
63. Wichmann, H., Anquandah, G. A., Schmidt, C., Zachmann, D., & Bahadir, M. A. (2007). Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany. Science of the Total Environment, 388(1-3), 121-127. [Crossref] [Google Scholar]
64. Wiseman, C. L., Pour, Z. H., & Zereini, F. (2016). Platinum group element and cerium concentrations in roadside environments in Toronto, Canada. Chemosphere, 145, 61-67. [Crossref] [Google Scholar]
65. Wong, C. S., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142(1), 1-16. [Crossref] [Google Scholar]
66. World Population Review. (2024). Human development index (HDI) by country 2024. https://worldpopulationreview.com/country-rankings/hdi-by-country
67. Yousefinejad, M., Khalife Soltani, S. M., & Rajabi, M. (2015). Analysis of energy consumption, economic welfare in developing countries 1995-2011. National Energy Conferences.
68. Zereini, F., Wiseman, C., & Püttmann, W. (2007). Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environmental Science & Technology, 41(2), 451-456. [Crossref] [Google Scholar]
69. Zereini, F., Wiseman, C. L., & Puttmann, W. (2012). In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2. 5, and PM1) using simulated lung fluids. Environmental Science & Technology, 46(18), 10326-10333. [Crossref] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb