1. Aguilera, A., Bautista-Hernández, D., Bautista, F., Goguitchaichvili, A., & Cejudo, R. (2021). Is the urban form a driver of heavy metal pollution in road dust? evidence from Mexico city. Atmosphere, 12(2), 266. [
Crossref]
2. Angel, S., Lamson-Hall, P., Blei, A., Shingade, S., & Kumar, S. (2021). Densify and expand: a global analysis of recent urban growth. Sustainability, 13(7), 3835. [
Crossref]
3. Aronson, M. F., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., . . . & Vargo, T. (2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 15(4), 189-196. [
Crossref]
4. Asgarian, A., Amiri, B. J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18, 209-222. [
Crossref]
5. Asgarian, A., Soffianian, A., Pourmanafi, S., & Bodaghabad, M. B. (2018). Evaluating the spatial effectiveness of alternative urban growth scenarios in protecting cropland resources: a case of mixed agricultural-urbanized landscape in central Iran. Sustainable Cities and Society, 43, 197-207. [
Crossref]
6. Azimzadeh, B., & Khademi, H. (2013). Estimation of background concentration of selected heavy metals for pollution assessment of surface soils of Mazandaran province, Iran. Water and Soil, 27(3), 548-559.
7. Budai, P., & Clement, A. (2018). Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: findings of a field study. Transportation Research Part D: Transport and Environment, 62, 179-185. [
Crossref]
8. Core Team, R. (2021). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.scirp.org/reference/referencespapers?referenceid=3131254
9. Denny, M., Baskaran, M., Burdick, S., Tummala, C., & Dittrich, T. (2022). Investigation of pollutant metals in road dust in a post-industrial city: a case study from Detroit, Michigan. Frontiers in Environmental Science, 10, 974237. [
Crossref]
10. Gundacker, C., Forsthuber, M., Szigeti, T., Kakucs, R., Mustieles, V., Fernandez, M. F., . . . & Saber, A. T. (2021). Lead (Pb) and neurodevelopment: a review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. International Journal of Hygiene and Environmental Health, 238, 113855. [
Crossref]
11. He, A., Li, X., Ai, Y., Li, X., Li, X., Zhang, Y., . . . & Zhang, M. (2020). Potentially toxic metals and the risk to children’s health in a coal mining city: an investigation of soil and dust levels, bioaccessibility and blood lead levels. Environment International, 141, 105788. [
Crossref]
12. Hrotkó, K., Gyeviki, M., Sütöriné, D. M., Magyar, L., Mészáros, R., Honfi, P., & Kardos, L. (2021). Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environmental Geochemistry and Health, 43, 1927-1940. [
Crossref]
13. Huang, W., Shi, X., & Wu, K. (2021). Human body burden of heavy metals and health consequences of Pb exposure in Guiyu, an E-waste recycling town in China. International Journal of Environmental Research and Public Health, 18(23), 12428. [
Crossref]
14. Hwang, H. M., Fiala, M. J., Park, D., & Wade, T. L. (2016). Review of pollutants in urban road dust and stormwater runoff: part 1. Heavy metals released from vehicles. International Journal of Urban Sciences, 20(3), 334-360. [
Crossref]
15. Jeong, H., Ryu, J. S., & Ra, K. (2022). Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. Environmental Pollution, 292, 118339. [
Crossref]
16. Kelepertzis, E., Argyraki, A., Chrastný, V., Botsou, F., Skordas, K., Komárek, M., & Fouskas, A. (2020). Metal (loid) and isotopic tracing of Pb in soils, road and house dust from the industrial area of Volos (central Greece). Science of the Total Environment, 725, 138300. [
Crossref]
17. Kumar, P. G., Lekhana, P., Tejaswi, M., & Chandrakala, S. (2021). Effects of vehicular emissions on the urban environment-a state of the art. Materials Today: Proceedings, 45, 6314-6320. [
Crossref]
18. Lin, J., Deng, Y., Chen, S., Li, K., Ji, W., & Li, W. (2023). Research progress of urban park microclimate based on quantitative statistical software. Buildings, 13(9), 2335. [
Crossref]
19. Liu, L., Liu, Q., Ma, J., Wu, H., Qu, Y., Gong, Y., . . . & Zhou, Y. (2020). Heavy metal (loid) s in the topsoil of urban parks in Beijing, China: concentrations, potential sources, and risk assessment. Environmental Pollution, 260, 114083. [
Crossref]
20. Marija, P., Dragana, P., Olga, K., Snežana, J., Dragan, Č., Pavle, P., & Miroslava, M. (2017). Evaluation of urban contamination with trace elements in city parks in Serbia using pine (Pinus nigra Arnold) needles, bark and urban topsoil. International Journal of Environmental Research, 11(5-6), 625-639. [
Crossref]
21. Marín-Sanleandro, P., Delgado-Iniesta, M. J., Sáenz-Segovia, A. F., & Sánchez-Navarro, A. (2023). Spatial identification and hotspots of ecological risk from heavy metals in urban dust in the city of Cartagena, SE Spain. Sustainability, 16(1), 307. [
Crossref]
22. Pace, R., Liberati, D., Sconocchia, P., & De Angelis, P. (2020). Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site. Environmental Geochemistry and Health, 42(8), 2321-2329. [
Crossref]
23. Siddiqui, Z., Khillare, P., Jyethi, D. S., Aithani, D., & Yadav, A. K. (2020). Pollution characteristics and human health risk from trace metals in roadside soil and road dust around major urban parks in Delhi city. Air Quality, Atmosphere & Health, 13, 1271-1286. [
Crossref]
24. Sultan, M. B., Choudhury, T. R., Alam, M. N. E., Doza, M. B., & Rahmana, M. M. (2022). Soil, dust, and leaf-based novel multi-sample approach for urban heavy metal contamination appraisals in a megacity, Dhaka, Bangladesh. Environmental Advances, 7, 100154. [
Crossref]
25. UNDESA. (2018). World urbanization prospects: the 2018 revision. https://population.un.org/wup/assets/WUP2018-Report.pdf
26. Wang, J., Yu, J., Gong, Y., Wu, L., Yu, Z., Wang, J., . . . & Liu, W. (2021). Pollution characteristics, sources and health risk of metals in urban dust from different functional areas in Nanjing, China. Environmental Research, 201, 111607. [
Crossref]
27. Wang, J. M., Jeong, C. H., Hilker, N., Healy, R. M., Sofowote, U., Debosz, J., . . . & Evans, G. J. (2021). Quantifying metal emissions from vehicular traffic using real-world emission factors. Environmental Pollution, 268, 115805. [
Crossref]
28. Xie, N., Kang, C., Feng, B., & Zhang, B. (2024). Insight of heavy metal contamination of soil in high background area: field investigation and laboratory test. International Journal of Environmental Science and Technology, 22, 1-16. [
Crossref]
29. Yang, J., Han, Z., Yan, Y., Guo, G., Wang, L., Shi, H., & Liao, X. (2024). Neglected pathways of heavy metal input into agricultural soil: water-land migration of heavy metals due to flooding events. Water Research, 267, 122469. [
Crossref]
30. Yu, Z., Zhang, H., Tao, Z., & Liang, J. (2019). Amenities, economic opportunities and patterns of migration at the city level in China. Asian and Pacific Migration Journal, 28(1), 3-27. [
Crossref]
31. Zhao, L., Yu, R., Yan, Y., Cheng, Y., Hu, G., & Huang, H. (2020). Bioaccessibility and provenance of heavy metals in the park dust in a coastal city of southeast China. Applied Geochemistry, 123, 104798. [
Crossref]