XML Print


1- Department of Environmental Science and Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2- Department of Environmental Science and Engineering, Waste and Wastewater Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
3- Department of Soil Science, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
4- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Science, Shahrekord University, Shahrekord, Iran.
Abstract:   (98 Views)
Background: Earthworms are known to respond quickly to various environmental stressors. The present study aimed to investigate the relationship between varying levels of tire-derived microplastic (TMP) exposure and the accumulation of specific heavy metals in the earthworm Eisenia fetida.
Methods: We assessed the accumulation of arsenic (As), cadmium (Cd), chromium (Cr), tin (Sn), aluminum (Al), lead (Pb), zinc (Zn), and molybdenum (Mo) in Eisenia fetida through a 14-day controlled exposure to TMP concentrations of 0, 10, 50, 100, and 200 mg/g dry artificial soil, with three replications.
Results: The accumulation of Cr, Sn, Al, Pb, Zn, and Mo increased significantly with TMP concentrations exceeding 100 mg/g. The concentration of Cd remained statistically similar in TMP concentrations above 50 mg/g, while a significant increase in Zn concentration was observed at TMP levels higher than 100 mg/g. The correlation coefficients between Potentially Toxic Elements (PTEs) concentration in the species and inhabited soil were negative and statistically significant for Cd (p-value < 0.05), Al (p-value < 0.01), and Mo (p-value < 0.05), suggesting a depletion of PTEs from the soil as the earthworms accumulated higher concentrations.  Maximum levels reached 130.44 ± 4.43 μg/L for Sn, 2.46 ± 1.74 mg/L for Zn, and 0.057 ± 0.006 mg/L for Cr in the 200 mg TMP exposures.
Conclusion: This study used artificial soil samples, and the impact of soil physicochemical characteristics on the mobility and bioavailability of MP-associated PTEs remains an area open for future investigation.
     
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2024/09/2 | Accepted: 2024/09/26

References
1. Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009-1017. [Crossref]
2. Akhila, A., & Entoori, K. (2022). Role of earthworms in soil fertility and its impact on agriculture: a review. International Journal of Fauna and Biological Studies, 9, 55-63. [Crossref]
3. Bahiru, D. B. (2021). Accumulation of toxic and trace metals in agricultural soil: a review of source and chemistry in Ethiopia. International Journal of Environmental Chemistry, 5, 17-22. [Crossref]
4. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9). [Crossref]
5. Brown, S. A., Simpson, A. J., & Simpson, M. J. (2008). Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environmental Toxicology and Chemistry: An International Journal, 27(4), 828-836. [Crossref]
6. Chen, X., Huang, G., & Dionysiou, D. D. (2021). Editorial overview: emissions of microplastics and their control in the environment. Journal of Environmental Engineering, 147(9), 01821002. [Crossref]
7. Cui, W., Gao, P., Zhang, M., Wang, L., Sun, H., & Liu, C. (2022). Adverse effects of microplastics on earthworms: a critical review. Science of the Total Environment, 850, 158041. [Crossref]
8. Domínguez-Crespo, M. A., Sánchez-Hernández, Z. E., Torres-Huerta, A. M., Negrete-Rodríguez, M. D., Conde-Barajas, E., & Flores-Vela, A. (2012). Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabilization of municipal sewage sludge. Water, Air, & Soil Pollution, 223, 915-931. [Crossref]
9. Fourie, F., Reinecke, S. A., & Reinecke, A. J. (2007). The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicology and Environmental Safety, 67(3), 361-368. [Crossref]
10. Gupta, R., & Garg, V. K. (2017). Vermitechnology for organic waste recycling. In Current developments in biotechnology and bioengineering (pp. 83-112). Elsevier. [Crossref]
11. He, F., Liu, Q., Jing, M., Wan, J., Huo, C., Zong, W., . . . & Liu, R. (2021). Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): a combined molecular and cellular study. Journal of Hazardous Materials, 418, 126302. [Crossref]
12. Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714-4721. [Crossref]
13. Huang, C., Ge, Y., Yue, S., Zhao, L., & Qiao, Y. (2021). Microplastics aggravate the joint toxicity of earthworm Eisenia fetida with cadmium by altering its availability. Science of the Total Environment, 753, 142042. [Crossref]
14. Karmegam, N., Vijayan, P., Prakash, M., & Paul, J. A. J. (2019). Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: a viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production, 228, 718-728. [Crossref]
15. Kim, D., Chae, Y., & An, Y. J. (2017). Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna. Environmental Science & Technology, 51(21), 12852-12858. [Crossref]
16. Kniuipyte, I., Zaltauskaitė, J., & Praspaliauskas, M. (2022). Heavy metals vermiremediation potential using Eisenia fetida at different sewage sludge treatments in soil. In Abstract book setac Europe 32nd annual meeting "towards a reduced pollution society".
17. Lackmann, C., Velki, M., Šimić, A., Müller, A., Braun, U., Ečimović, S., & Hollert, H. (2022). Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. Environment International, 163, 107190. [Crossref]
18. Lapinski, S., & Rosciszewska, M. (2008). The impact of cadmium and mercury contamination on reproduction and body mass of earthworms. Plant Soil and Environment, 54(2), 61. [Crossref]
19. Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., . . . & Zhang, P. (2021). Interactions between microplastics and heavy metals in aquatic environments: a review. Frontiers in Microbiology, 12, 652520. [Crossref]
20. Mai, H., Thien, N. D., Dung, N. T., & Valentin, C. (2023). Impacts of microplastics and heavy metals on the earthworm Eisenia fetida and on soil organic carbon, nitrogen, and phosphorus. Environmental Science and Pollution Research, 30(23), 64576-64588. [Crossref]
21. Odoi, B., Twumasi-Ankrah, S., Samita, S., & Al-Hassan, S. (2022). The efficiency of bartlett's test using different forms of residuals for testing homogeneity of variance in a single and factorial experiments-a simulation study. Scientific African, 17, e01323. [Crossref]
22. OECD. (2004). Guideline for testing of chemicals, no. 222, earthworm reproduction test (Eisenia fetida/andrei). In Organization for Economic Cooperation and Development. Paris France.
23. Ragoobur, D., Huerta-Lwanga, E., & Somaroo, G. D. (2022). Reduction of microplastics in sewage sludge by vermicomposting. Chemical Engineering Journal, 450, 138231. [Crossref]
24. Rødland, E. S., Lind, O. C., Reid, M., Heier, L. S., Skogsberg, E., Snilsberg, B., Gryteselv, D., & Meland, S. (2022). Characterization of tire and road wear microplastic particle contamination in a road tunnel: from surface to release. Journal of Hazardous Materials, 435, 129032. [Crossref]
25. Sharma, S., Mahima, A., Gupta, R., & Singh, D. (2021). Heavy metals toxicity on various growth parameters and biomolecules of earthworm, Eisenia fetida. Acta Scientific Veterinary Sciences (ISSN: 2582-3183), 3(9). [Crossref]
26. Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F., & Zhou, C. (2021). Surfactant changes lead to adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405, 126989. [Crossref]
27. Sheng, Y., Liu, Y., Wang, K., Cizdziel, J. V., Wu, Y., & Zhou, Y. (2021). Ecotoxicological effects of micronized car tire wear particles and their heavy metals on the earthworm (Eisenia fetida) in soil. Science of the Total Environment, 793, 148613. [Crossref]
28. Tamis, J. E., Koelmans, A. A., Dröge, R., Kaag, N. H., Keur, M. C., Tromp, P. C., & Jongbloed, R. H. (2021). Environmental risks of car tire microplastic particles and other road runoff pollutants. Microplastics and Nanoplastics, 1(1), 1-17. [Crossref]
29. Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J. J., & Luo, Y. (2020). Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater. Science of the Total Environment, 734, 139237. [Crossref]
30. Tutorials, S. (2021). SPSS Kolmogorov-Smirnov test for normality.
31. Van Gestel, C. A., Ortiz, M. D., Borgman, E., & Verweij, R. A. (2011). The bioaccumulation of molybdenum in the earthworm Eisenia andrei: influence of soil properties and aging. Chemosphere, 82(11), 1614-1619. [Crossref]
32. Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., & Sun, Y. (2019). Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235, 1073-1080. [Crossref]
33. Wang, H. T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X. Y., . . . & Xue, X. M. (2019). Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251, 110-116. [Crossref]
34. Wang, L., Peng, Y., Xu, Y., Zhang, J., Liu, C., Tang, X., . . . & Sun, H. (2022). Earthworms’ degradable bioplastic diet of polylactic acid: easy to break down and slow to excrete. Environmental Science & Technology, 56(8), 5020-5028. [Crossref]
35. Worek, J., Badura, X., Białas, A., Chwiej, J., Kawoń, K., & Styszko, K. (2022). Pollution from transport: detection of tyre particles in environmental samples. Energies, 15(8), 2816. [Crossref]
36. Yadav, R., Kumar, R., Gupta, R. K., Kaur, T., Kour, A., Kaur, S., & Rajput, A. (2023). Heavy metal toxicity in earthworms and its environmental implications: a review. Environmental Advances, 12, 100374. [Crossref]
37. Yan, X., Wang, J., Zhu, L., Wang, J., Li, S., & Kim, Y. M. (2021). Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Science of the Total Environment, 754, 141873. [Crossref]
38. Yuvaraj, A., Thangaraj, R., Karmegam, N., Ravindran, B., Chang, S. W., Awasthi, M. K., & Kannan, S. (2021). Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: a viable resource recovery option for heavy metal contaminated soils and water. Chemosphere, 278, 130458. [Crossref]
39. Žaltauskaitė, J., Kniuipytė, I., & Kugelytė, R. (2020). Lead impact on the earthworm Eisenia fetida and earthworm recovery after exposure. Water, Air, & Soil Pollution, 231, 1-8. [Crossref]
40. Zhou, Y., Liu, X., & Wang, J. (2020). Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. Journal of Hazardous Materials, 392, 122273. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb