Volume 10, Issue 4 (10-2024)                   jhehp 2024, 10(4): 209-216 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fazeli S T, Bimakr M. Optimization of Bioactive Compounds Extraction from Platanus Orientalis Leaves using Microwave-Assisted Technique. jhehp 2024; 10 (4) :209-216
URL: http://jhehp.zums.ac.ir/article-1-655-en.html
1- Department of Food Science and Engineering, Hidaj Branch, Islamic Azad University, Hidaj, Iran.
2- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
Abstract:   (282 Views)
Background: The increasing consumers’ demands for natural bioactive compounds can be attributed to the adverse effects of synthetic antioxidants. While Platanus orientalis leaves are considered waste material, they are a rich source of bioactive compounds. Conventional extraction techniques, however, have different drawbacks for the recovery of bioactive compounds. The current study aimed to optimize and evaluate the impact of microwave-assisted extraction (MAE) as an independent variable on bioactive compounds recovery from P. orientalis leaves.
Methods: Response surface methodology was employed to optimize the extraction conditions and maximize the quantitative yield of bioactive compounds. Moreover, the influence of the MAE process on antioxidant activity and phenolic compound profile was investigated using spectroscopy and chromatography techniques.
Results: The optimal MAE conditions were determined to be 300 W microwave power, 17 min irradiation time, and a solvent-to-sample ratio of 31 v/w. The extract obtained under these optimized conditions showed a higher concentration of valuable phenolic compounds, including rutin, gallic acid, myricetin, and catechin.
Conclusion: The leaves of P. orientalis have the potential to be a source of bioactive compounds with significant anti-radical capacity. MAE is a potential modern technique to separate bioactive compounds from P. orientalis leaves, which could find further applications in the food and pharmaceutical industries.
Full-Text [PDF 1058 kb]   (38 Downloads)    
Type of Study: Original Article | Subject: Food Safety and Hygiene
Received: 2024/08/11 | Accepted: 2024/10/5 | Published: 2024/10/15

References
1. Aourach, M., González-de-Peredo, A. V., Vázquez-Espinosa, M., Essalmani, H., Palma, M., & Barbero, G. F. (2021). Optimization and comparison of ultrasound and microwave-assisted extraction of phenolic compounds from cotton-lavender (Santolina chamaecyparissus L.). Agronomy, 11, 84. [Crossref] [Google Scholar]
2. Cavalluzzi, M. M., Lamonaca, A., Rotondo, N. P., Miniero, D. V., Muraglia, M., Gabriele, P., . . . & Lentini, G. (2022). Microwave-assisted extraction of bioactive compounds from lentil wastes: Antioxidant activity evaluation and Metabolomic characterization. Molecules, 27(21), 7471. [Crossref] [Google Scholar]
3. Chaari, M., Akermi, S., Elhadef, K., Said-Al Ahl, H. A., Hikal, W. M., Mellouli, L., & Smaoui, S. (2024). Microwave-assisted extraction of bioactive and nutraceuticals. In bioactive extraction and application in food and nutraceutical industries (pp. 79-102). New York, NY: Springer US. [Crossref] [Google Scholar]
4. Chatzimitakos, T., Athanasiadis, V., Kotsou, K., Bozinou, E., & Lalas, S. I. (2023). Response surface optimization for the enhancement of the extraction of bioactive compounds from citrus lemon peel. Antioxidants, 12, 1605. [Crossref] [Google Scholar]
5. Daliri Sosefi, Z., Bimakr, M., & Ganjloo, A. (2024). Optimization of microwave-assisted extraction of bioactive compounds from veronica persica using response surface methodology. Journal of Human Environment and Health Promotion, 10, 143-151. [Crossref] [Google Scholar]
6. Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., . . . & Eloutassi, N. (2019). Extraction of essential oils of Rosmarinus officinalis L. by two different methods: Hydrodistillation and microwave-assisted hydrodistillation. The Scientific World Journal, 1, 1-6. [Crossref] [Google Scholar]
7. Feki, F., Klisurova, D., Masmoudi, M. A., Choura, S., Denev, P., Trendafilova, A., . . . & Sayadi, S. (2021). Optimization of microwave-assisted extraction of simmondsins and polyphenols from Jojoba (Simmondsia chinensis) seed cake using Box-Behnken statistical design. Food Chemistry, 356, 129670. [Crossref] [Google Scholar]
8. Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species-sources, functions, oxidative damage. Polski Merkuriusz Lekarski, 48, 124-127. [Google Scholar]
9. Kadi, A., Boudries, H., Bachir-bey, M., Teffane, M., Taibi, A., & Boulekbache-Makhlouf, L. (2022). Optimization of microwave-assisted extraction of carotenoids from Citrus clementina peels. Current Bioactive Compounds, 18(6), 63-73. [Crossref] [Google Scholar]
10. Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., . . . & Etherton, T. D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine, 113(9), 71-88. [Crossref] [Google Scholar]
11. López-Salazar, H., Camacho-Díaz, B. H., Ocampo, M. L. A., & Jiménez-Aparicio, A. R. (2023). Microwave-assisted extraction of functional compounds from plants: A review. Bioresources,18, 6614-6638. [Crossref] [Google Scholar]
12. Luque de Castro, M. D., & Garcia-Ayuso, L. E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369, 1-10. [Crossref] [Google Scholar]
13. Mirsadraee, M., Tavakoli, A., Ghorani, V., & Ghaffari, S. (2018). Effects of Rosmarinus officinalis and Platanus orientalis extracts on asthmatic subjects resistant to routine treatments. Avicenna Journal of Phytomedicine, 8, 399-407. [Google Scholar]
14. Mojaradi, F., Bimakr, M., & Ganjloo, A. (2021). Feasibility of hydroethanolic solvent system for bioactive compounds recovery from aerial parts of Silybum marianum and kinetics modeling. Journal of Human Environment and Health Promotion, 7, 129-137. [Crossref] [Google Scholar]
15. Naduvilthara, U., Pathrose, V. B., Chellappan, M., Ranjith, M. T., Sindhu, P. V., & Mathew, D. (2023). Extraction and chemical characterization of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. Waste Management, 169, 1-10. [Crossref] [Google Scholar]
16. Norouzi, F., Bimakr, M., & Ganjloo, A. (2021). Feasibility of application of microwave pretreatment to improve oil extraction efficiency from Cucurbita pepo (Cucurbita pepo subsp. Pepo var. Styriaca) Seed. Journal of Innovation in Food Science and Technology, 13 (1), 107-118. [Google Scholar]
17. Noroozi, F., Bimakr, M., Ganjloo, A., & Aminzare, M. (2021). A short time bioactive compounds extraction from Cucurbita pepo seed using continuous ultrasound-assisted extraction. Journal of Food Measurement and Characterization, 15, 2135-2145. [Crossref] [Google Scholar]
18. Özbek, H., Koçak Yanık, D., Fadıloğlu, S., & Gögüs, F. (2019). Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Separation Science and Technology, 55, 1-11. [Crossref] [Google Scholar]
19. Patil, S. S., & Rathod, V. K. (2023). Extraction and purification of curcuminoids from Curcuma longa using microwave-assisted deep eutectic solvent-based system and cost estimation. Process Biochemistry, 126, 61-71. [Crossref] [Google Scholar]
20. Piasecka, I., Brzezińska, R., Kalisz, S., Wiktor, A., & Górska, A. (2024). Response surface methodology for optimization of ultrasound-assisted antioxidants extraction from blackberry, chokeberry and raspberry pomaces. Plants, 13, 1120. [Crossref] [Google Scholar]
21. Poodi, Y., Bimakr, M., Ganjloo, A., & Zarringhalami, S. (2018). Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana Berg.) leaves using ultrasonic waves. Food and Bioproducts Processing, 108, 37-50. [Crossref] [Google Scholar]
22. Rahmi, I., Jufri, M., & Munim, A. (2020). Extraction of quercetin from nothopanax scutellarium leaves via ionic liquid-based microwave-assisted extraction. Pharmacognosy Journal, 12, 1512-1517. [Crossref] [Google Scholar]
23. Ramic, M., Vidovic, S., Zekovic, Z., Vladic, J., Cvejin, A., & Pavlic, B. (2015). Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry, 23, 360-368. [Crossref] [Google Scholar]
24. Ribeiro, J. S., Santos, M. J. M. C., Silva, L. K. R., Pereira, L. C. L., Santos, I. A., da Silva Lannes, S. C., & da Silva, M. V. (2019). Natural antioxidants used in meat products: A brief review. Meat Science, 148, 181-188. [Crossref] [Google Scholar]
25. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2020). Effects of binary solvent system on radical scavenging activity and recovery of verbascoside from Lemon verbena leaves. Journal of Human Environment and Health Promotion, 6, 69-7629. [Crossref] [Google Scholar]
26. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2022). Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. Journal of Food Measurement and Characterization, 16, 4388-4401. [Crossref] [Google Scholar]
27. Samanta, R., & Ghosh, M. (2023). Optimization of microwave-assisted extraction technique for flavonoids and phenolics from the leaves of Oroxylum indicum (L.) Kurtz using Taguchi L9 orthogonal design. Pharmacognosy Magazine, 19, 97-104. [Crossref] [Google Scholar]
28. Shen, S., Zhou, C., Zeng, Y., Zhang, H., Hossen, M. A., Dai, J., . . . & Liu, Y. (2022). Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction. Lwt, 154, 112446. [Crossref] [Google Scholar]
29. Tomasi, I. T., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2023). Microwave-assisted extraction of polyphenols from Eucalyptus Bark-a first step for green production of tannin-based coagulants. Water, 15(2), 317. [Crossref] [Google Scholar]
30. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300-312. [Crossref] [Google Scholar]
31. Zandi, M., Ganjloo, A., Bimakr, M., & Nasiri, M. (2023). Ohmic heating extraction of radish (Raphanus sativus L.) leaf phenolic extract: Numerical optimization and kinetic modelling. Food Science and Technology (Iran), 20, 141-157. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2024 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb