1. Abbas, M., Ahmed, D., Qamar, M. T., Ihsan, S., & Noor, Z. I. (2021). Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresource Technology Reports, 15, 100746. [
Crossref] [
Google Scholar]
2. Ajami, M. R., Ganjloo, A., & Bimakr, M. (2023). Continuous fast microwave-assisted extraction of radish leaves polysaccharides: optimization, preliminary characterization, biological, and techno-functional properties. Biomass Conversion and Biorefinery, 13(16), 14987-15000. [
Crossref] [
Google Scholar]
3. Alam, P., Siddiqui, N. A., Rehman, M. T., Hussain, A., Akhtar, A., Mir, S. R., & Alajmi, M. F. (2021). Box-behnken design (BBD)-based optimization of microwave-assisted extraction of parthenolide from the stems of Tarconanthus camphoratus and cytotoxic analysis. Molecules, 26(7), 1876. [
Crossref] [
Google Scholar]
4. Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2018). Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food and Bioproducts Processing, 107, 36-48. [
Crossref] [
Google Scholar]
5. Alara, O. R., Ukaegbu, C. I., Abdurahman, N. H., Alara, J. A., & Ali, H. A. (2023). Plant-sourced antioxidants in human health: A state-of-art review. Current Nutrition & Food Science, 19(8), 817-830. [
Crossref] [
Google Scholar]
6. Arya, S. S., More, P. R., Ladole, M. R., Pegu, K., & Pandit, A. B. (2023). Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. Ultrasonics Sonochemistry, 98, 106504. [
Crossref] [
Google Scholar]
7. Baltacıoğlu, H., Baltacıoğlu, C., Okur, I., Tanrıvermiş, A., & Yalıç, M. (2021). Optimization of microwave-assisted extraction of phenolic compounds from tomato: Characterization by FTIR and HPLC and comparison with conventional solvent extraction. Vibrational Spectroscopy, 113, 103204. [
Crossref] [
Google Scholar]
8. Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvent extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49, 668-674. [
Crossref] [
Google Scholar]
9. Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595. [
Crossref] [
Google Scholar]
10. Dairi, S., Dahmoune, F., Belbahi, A., Remini, H., Kadri, N., Aoun, O., . . . & Madani, K. (2021). Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. Journal of Applied Research on Medicinal and Aromatic Plants, 22, 100301. [
Crossref] [
Google Scholar]
11. Feki, F., Klisurova, D., Masmoudi, M. A., Choura, S., Denev, P., Trendafilova, A., . . . & Sayadi, S. (2021). Optimization of microwave-assisted extraction of simmondsins and polyphenols from Jojoba (Simmondsia chinensis) seed cake using box-behnken statistical design. Food Chemistry, 356, 129670. [
Crossref] [
Google Scholar]
12. Fierascu, R. C., Georgiev, M. I., Fierascu, I., Ungureanu, C., Avramescu, S. M., Ortan, A., . . . & Anuta, V. (2018). Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food and Chemical Toxicology, 111, 44-52. [
Crossref] [
Google Scholar]
13. Gala, S., Sumarno, S., & Mahfud, M. (2022). Optimization of microwave-assisted extraction of natural dyes from jackfruit wood (Artocarpus heterophyllus Lamk) by response surface methodology. Engineering and Applied Science Research, 49(1), 29-35. [
Google Scholar]
14. Garcia-Vaquero, M., Ummat, V., Tiwari, B., & Rajauria, G. (2020). Exploring ultrasound, microwave, and ultrasound-microwave-assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Marine Drugs, 18(3), 172. [
Crossref] [
Google Scholar]
15. Harput, U. S., Saracoglu, I., Inoue, M., & Ogihara, Y. (2002). Phenylethanoid and iridoid glycosides from Veronica persica. Chemical and Pharmaceutical Bulletin, 50(6), 869-871. [
Crossref] [
Google Scholar]
16. Imtiaz, F., Ahmed, D., Abdullah, R. H., & Ihsan, S. (2023). Green extraction of bioactive compounds from Thuja orientalis leaves using microwave-and ultrasound-assisted extraction and optimization by response surface methodology. Sustainable Chemistry and Pharmacy, 35, 101212. [
Crossref] [
Google Scholar]
17. Karimi, S., Sharifzadeh, S., & Abbasi, H. (2020). Sequential ultrasound-microwave assisted extraction as a green method to extract essential oil from Zataria multiflora. Journal of Food and Bioprocess Engineering, 3(2), 101-109. [
Google Scholar]
18. Kumar, G., Le, D. T., Durco, J., Cianciosi, S., Devkota, L., & Dhital, S. (2023). Innovations in legume processing: Ultrasound-based strategies for enhanced legume hydration and processing. Trends in Food Science & Technology, 139(1), 104122. [
Crossref] [
Google Scholar]
19. Kumar, S., Chauhan, N., Tyagi, B., Yadav, P., Samanta, A. K., & Tyagi, A. K. (2023). Exploring bioactive compounds and antioxidant properties of twenty-six Indian medicinal plant extracts: A correlative analysis for potential therapeutic insights. Food and Humanity, 1, 1670-1679. [
Crossref] [
Google Scholar]
20. Latiff, N. A., Ong, P. Y., Abd Rashid, S. N. A., Abdullah, L. C., Mohd Amin, N. A., & Fauzi, N. A. M. (2021). Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Scientific Reports, 11(1), 1-12. [
Crossref] [
Google Scholar]
21. Liu, X., Huang, H., Yang, L., & Huang, K. (2023). Degree of coupling in microwave-heating polar-molecule reactions. Molecules, 28(3), 1364. [
Crossref] [
Google Scholar]
22. Maier, A., Padureanu, V., Lupu, M. I., Canja, C. M., Badarau, C., Padureanu, C., . . . & Poiana, M. A. (2023). Optimization of a procedure to improve the extraction rate of biologically active compounds in red grape must using high-power ultrasound. Sustainability, 15(8), 6697. [
Crossref] [
Google Scholar]
23. Mali, P. S., & Kumar, P. (2023). Optimization of microwave-assisted extraction of bioactive compounds from black bean waste and evaluation of its antioxidant and antidiabetic potential in vitro. Food Chemistry Advances, 3, 100543. [
Crossref] [
Google Scholar]
24. Nanzai, B., Mochizuki, A., Wakikawa, Y., Masuda, Y., Oshio, T., & Yagishita, K. (2023). Sonoluminescence intensity and ultrasonic cavitation temperature in organic solvents: Effects of generated radicals. Ultrasonics Sonochemistry, 95, 106357. [
Crossref] [
Google Scholar]
25. Nazal, M. K., Sajid, M., & Gijjapu, D. R. (2023). Membrane-based inverted liquid-liquid extraction of organochlorine pesticides in aqueous samples: evaluation, merits, and demerits. Chemical Papers, 1-11. [
Crossref] [
Google Scholar]
26. Nguyen, Q. T., Nguyen, V. T., Phan, T. H., Duy, T. N., Park, S. H., & Park, W. G. (2023). Numerical study of dynamics of cavitation bubble collapse near oscillating walls. Physics of Fluids, 35(1), 013306. [
Crossref] [
Google Scholar]
27. Ogura, Y., Taniya, K., Horie, T., Tung, K. L., Nishiyama, S., Komoda, Y., & Ohmura, N. (2023). Process intensification of synthesis of metal-organic framework particles assisted by ultrasound irradiation. Ultrasonics Sonochemistry, 96, 106443. [
Crossref] [
Google Scholar]
28. Özbek, H. N., Yanık, D. K., Fadıloğlu, S., & Göğüş, F. (2020). Optimization of microwave-assisted extraction of bioactive compounds from pistachio (Pistacia vera L.) hull. Separation Science and Technology, 55(2), 289-299. [
Crossref] [
Google Scholar]
29. Ozdemir, M., & Karagoz, S. (2023). Effects of microwave drying on physicochemical characteristics, microstructure, and antioxidant properties of propolis extract. Journal of the Science of Food and Agriculture, 104(4), 2189-2197. [
Crossref] [
Google Scholar]
30. Patrascu, M., & Radoiu, M. (2016). Rose essential oil extraction from fresh petals using synergetic microwave & ultrasound energy: Chemical composition and antioxidant activity assessment. Journal of Chemistry and Chemical Engineering, 10(3), 136-142. [
Crossref] [
Google Scholar]
31. Pongmalai, P., Devahastin, S., Chiewchan, N., & Soponronnarit, S. (2015). Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Separation and Purification Technology, 144, 37-45. [
Crossref] [
Google Scholar]
32. Poodi, Y., Bimakr, M., Ganjloo, A., & Zarringhalami, S. (2018). Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana Berg.) leaves using ultrasonic waves. Food and Bioproducts Processing, 108, 37-50. [
Crossref] [
Google Scholar]
33. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2020). Effects of binary solvent system on radical scavenging activity and recovery of verbascoside from Lemon verbena leaves. Journal of Human Environment and Health Promotion, 6(2), 69-76. [
Crossref] [
Google Scholar]
34. Roshani Neshat, R., Bimakr, M., & Ganjloo, A. (2022). Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. Journal of Food Measurement and Characterization, 16(6), 4388-4401. [
Crossref] [
Google Scholar]
35. Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2023). Optimization of polyphenolic compounds from Gossampinus malabarica flowers by microwave-assisted extraction technology. Future Foods, 8, 100271. [
Crossref] [
Google Scholar]
36. Sai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2024). Optimization of microwave-assisted extraction of phenolic compounds and antioxidants from Careya sphaerica Roxb. flowers using response surface methodology. Applied Food Research, 4(1), 100379. [
Crossref] [
Google Scholar]
37. Saifullah, M., McCullum, R., & Vuong, Q. V. (2021). Optimization of microwave-assisted extraction of polyphenols from Lemon Myrtle: Comparison of modern and conventional extraction techniques based on bioactivity and total polyphenols in dry extracts. Processes, 9(12), 2212. [
Crossref] [
Google Scholar]
38. Saini, R. K., & Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90-103. [
Crossref] [
Google Scholar]
39. Salehi, B., Shivaprasad Shetty, M., V. Anil Kumar, N., Živković, J., Calina, D., Oana Docea, A., . . . & Nicola, S. (2019). Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology. Molecules, 24(13), 2454. [
Crossref] [
Google Scholar]
40. Saravana, P. S., Ummat, V., Bourke, P., & Tiwari, B. K. (2023). Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Critical Reviews in Biotechnology, 43(6), 904-919. [
Crossref] [
Google Scholar]
41. Sharifi-Rad, J., Tayeboon, G. S., Niknam, F., Sharifi-Rad, M., Mohajeri, M., Salehi, B., & Iriti, M. (2018). Veronica persica Poir. extract-antibacterial, antifungal, and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase, and xanthine oxidase. Cellular and Molecular Biology, 64(8), 50-56. [
Crossref] [
Google Scholar]
42. Sharifzadeh, S., Karimi, S., Abbasi, H., & Assari, M. (2022). Sequential ultrasound-microwave technique as an efficient method for extraction of essential oil from Lavandula coronopifolia Poir. Journal of Food Measurement and Characterization, 16(1), 377-390. [
Crossref] [
Google Scholar]
43. Sharma, A., Mazumdar, B., & Keshav, A. (2021). Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extraction of betacyanin and betaxanthin. Biomass Conversion and Biorefinery, 13(2), 1-17. [
Crossref] [
Google Scholar]
44. Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., . . . & Ma, H. (2023). A comprehensive review of ultrasonic-assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. [
Crossref] [
Google Scholar]
45. Shim, K. S., Song, H. K., Hwang, Y. H., Chae, S., Kim, H. K., Jang, S., . . . & Kim, K. M. (2022). Ethanol extract of Veronica persica ameliorates house dust mite-induced asthmatic inflammation by inhibiting STAT-3 and STAT-6 activation. Biomedicine & Pharmacotherapy, 152, 113264. [
Crossref] [
Google Scholar]
46. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. [
Crossref]
47. Sommano, S., Kerdtongmee, P., Chompoo, M., & Nisoa, M. (2015). Fabrication and characteristics of phase control microwave power for jasmine volatile oil extraction. Journal of Essential Oil Research, 27(4), 316-323. [
Crossref] [
Google Scholar]
48. Tomasi, I. T., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452. [
Crossref] [
Google Scholar]
49. Trujillo‐Mayol, I., Céspedes‐Acuña, C., Silva, F. L., & Alarcón‐Enos, J. (2019). Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. Journal of Food Process Engineering, 42(6), e13197. [
Crossref] [
Google Scholar]
50. Walayat, N., Yurdunuseven-Yıldız, A., Kumar, M., Goksen, G., Öztekin, S., & Lorenzo, J. M. (2023). Oxidative stability, quality, and bioactive compounds of oils obtained by ultrasound and microwave-assisted oil extraction. Critical Reviews in Food Science and Nutrition, 5, 1-18. [
Crossref] [
Google Scholar]
51. Xiaokang, W., Lyng, J. G., Brunton, N. P., Cody, L., Jacquier, J. C., Harrison, S. M., & Papoutsis, K. (2020). Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions. Biotechnology Reports, 27, e00504. [
Crossref] [
Google Scholar]
52. Yadav, R., Mohapatra, D., Subeesh, A., Shabeer, T. P., & Giri, S. K. (2023). Optimization of sequential ultrasound-microwave assisted extraction of polyphenols-rich concrete from tuberose flowers through modelling. Process Biochemistry, 134, 175-185. [
Crossref] [
Google Scholar]
53. Zengin, G., Cakmak, Y. S., Guler, G. O., & Aktumsek, A. (2010). In vitro antioxidant capacities and fatty acid compositions of three Centaurea species collected from Central Anatolia region of Turkey. Food and Chemical Toxicology, 48, 2638-2641. [
Crossref] [
Google Scholar]
54. Zhang, H., Li, H., Zhang, Z., & Hou, T. (2021). Optimization of ultrasound‐assisted extraction of polysaccharides from perilla seed meal by response surface methodology: Characterization and in vitro antioxidant activities. Journal of Food Science, 86(2), 306-318. [
Crossref] [
Google Scholar]