1. Kumar A, Sengupta B, Dasgupta D, Mandal T, Datta S. Recovery of Value Added Products from Rice Husk Ash to Explore an Economic Way for Recycle and Reuse of Agricultural Waste. Rev Environ Sci Biotechnol. 2016; 15: 47-65. [
Crossref] [
Google Scholar]
2. Pode R. Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant. Renew Sustain Energy Rev. 2016; 53: 1468-85. [
Crossref] [
Google Scholar]
3. Tram NT, Phuc PD, Phi NH, Trang LT, Nga TT, Ha HTT, et al. Cryptosporidium and Giardia in Biogas Wastewater: Management of Manure Livestock and Hygiene Aspects Using Influent, Effluent, Sewage Canal Samples, Vegetable, and Soil Samples. Pathog. 2022; 11(2): 174. [
Crossref] [
Google Scholar]
4. O'Connor J, Mickan BS, Siddique KH, Rinklebe J, Kirkham MB, Bolan NS. Physical, Chemical, and Microbial Contaminants in Food Waste Management for Soil Application: A Review. Environ Pollut. 2022; 300: 118860. [
Crossref] [
Google Scholar]
5. Tariq F, Samsuri A, Karam D, Aris A, Jamilu G. Bioavailability and Mobility of Arsenic, Cadmium, and Manganese in Gold Mine Tailings Amended with Rice Husk Ash and Fe-coated Rice Husk Ash. Environ Monit Assess. 2019; 191: 1-12. [
Crossref] [
Google Scholar]
6. Samsuri A, Tariq F, Karam D, Aris A, Jamilu G. Distribution of Heavy Metals Fractionation in Gold Mine Tailing Amended with Non-coated and Iron-coated Rice Husk Ash. Soil Sediment Contam. 2021; 30(5): 532-47. [
Crossref] [
Google Scholar]
7. Ibeto CN, Lag-Brotons AJ, Marshall R, Semple KT. Wood Ash Effects on Soil Properties and Lactuca Sativa Growth in Soils Amended with Digestate and Poultry Litter. J Plant Nutr. 2022; 1-15. [
Crossref] [
Google Scholar]
8. Kim N, Watmough SA, Yan ND. Wood Ash Amendments as a Potential Solution to Widespread Calcium Decline in Eastern Canadian Forests. Environ Rev. 2022; 30(4): 485-500. [
Crossref] [
Google Scholar]
9. Bang-Andreasen T, Nielsen JT, Voriskova J, Heise J, Rønn R, Kjøller R, et al. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition. Front Microbiol. 2017; 8: 1400. [
Crossref] [
Google Scholar]
10. Wang F, Wang F, Yang H, Yu J, Ni R. Ecological Risk Assessment Based on Soil Adsorption Capacity for Heavy Metals in Taihu Basin, China. Environ Pollut. 2023; 316: 120608. [
Crossref] [
Google Scholar]
11. Wang F, Wang F, Yang H, Yu J, Ni R. Ecological Risk Assessment Based on Soil Adsorption Capacity for Heavy Metals in Taihu Basin, China. Environ Pollut. 2023; 316: 120608. [
Crossref] [
Google Scholar]
12. Tabandeh L. The Effects of Tea Pulp and Rice Paddy Husk in Purification Effluents from Heavy Metals Lead and Cadmium. J Water Conserv Product. 2020; 1: 1-6.
13. Wu W, Wu P, Yang F, Sun DL, Zhang DX, Zhou YK. Assessment of Heavy Metal Pollution and Human Health Risks in Urban Soils Around an Electronics Manufacturing Facility. Sci Total Environ. 2018; 630: 53-61. [
Crossref] [
Google Scholar]
14. Abduolrahimi S, Ghorbanzadeh N, Ramezanpour H, Farhangi M. Efficiency of Natural and Modified Bentonite and Rice Husk on Immobilization of Cadmium and Its Effect on Some Biological Properties of Soil. J Water Soil. 2018; 32(1): 169-83. [
Google Scholar]
15. Sheikh L, Younis U, Shahzad AS, Hareem M, Elahi NN, Danish S. Evaluating the Effects of Cadmium Under Saline Conditions on Leafy Vegetables by Using Acidified Biochar. Pak J Bot. 2023; 55: 1537. [
Crossref] [
Google Scholar]
16. Johns CE, Gattu M, Camilli S, Desaraju A, Kolliputi N, Galam L. The Cd/Zn Axis: Emerging Concepts in Cellular Fate and Cytotoxicity. Biomolecules. 2023; 13(2): 316. [
Crossref] [
Google Scholar]
17. Zhou X, Gai Z, Wang Y, Liu S, Zhang X, Guo F, et al. High Performance Ratiometric Detection Towards Trace Cd (II) and Pb (II) Utilizing In-situ Bismuth Modified Nitrogen Rich Porous Carbon/Boron Doped Diamond Composite Electrode. J Environ Chem Eng. 2023; 11(2): 109448. [
Crossref] [
Google Scholar]
18. Hasan GA, Das AK, Satter MA, Asif M. Distribution of Cr, Cd, Cu, Pb and Zn in Organs of Three Selected Local Fish Species of Turag River, Bangladesh and Impact Assessment on Human Health. Emerg Contam. 2023; 9(1): 100197. [
Crossref] [
Google Scholar]
19. Hamid Y, Tang L, Sohail MI, Cao X, Hussain B, Aziz MZ, et al. An Explanation of Soil Amendments to Reduce Cadmium Phytoavailability and Transfer to Food Chain. Sci Total Environ. 2019; 660: 80-96. [
Crossref] [
Google Scholar]
20. Ullah I, Al-Johny BO, Al-Ghamdi KM, Al-Zahrani HA, Anwar Y, Firoz A, et al. Endophytic Bacteria Isolated from Solanum Nigrum L., Alleviate Cadmium (Cd) Stress Response by Their Antioxidant Potentials, Including SOD Synthesis by sodA Gene. Ecotoxicol Environ Saf. 2019; 174: 197-207. [
Crossref] [
Google Scholar]
21. Nouairi I, Jalali K, Zribi F, Barhoumi F, Zribi K, Mhadhbi H. Seed Priming with Calcium Chloride Improves the Photosynthesis Performance of Faba Bean Plants Subjected to Cadmium Stress. Photosynthetica. 2019; 57(2): 438-45. [
Crossref] [
Google Scholar]
22. Ye M, Zhou H, Hao J, Chen T, He Z, Wu F, et al. Microwave Pretreatment on Microstructure, Characteristic Compounds and Oxidative Stability of Camellia Seeds. Ind Crops Prod. 2021; 161: 113193. [
Crossref] [
Google Scholar]
23. Yao X, Zhou M, Ruan J, Peng Y, Yang H, Tang Y, et al. Pretreatment with H2O2 Alleviates the Negative Impacts of NaCl Stress on Seed Germination of Tartary Buckwheat (Fagopyrum Tataricum). Plants. 2021; 10(9): 1784. [
Crossref] [
Google Scholar]
24. Veljković VB, Kostić MD, Stamenković OS. Camelina Seed Harvesting, Storing, Pretreating, and Processing to Recover Oil: A Review. Ind Crops Prod. 2022; 178: 114539. [
Crossref] [
Google Scholar]
25. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021; 9(3): 42. [
Crossref] [
Google Scholar]
26. Chakraborty R, Asthana A, Singh AK, Jain B, Susan AB. Adsorption of Heavy Metal Ions by Various Low-cost Adsorbents: A Review. Int J Environ Anal Chem. 2022; 102(2): 342-79. [
Crossref] [
Google Scholar]
27. Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S, et al. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustain. 2020; 12(23): 9808. [
Crossref] [
Google Scholar]
28. Naik RL, Kumar MR, Narsaiah TB. Removal of Heavy Metals (Cu & Ni) from Wastewater Using Rice Husk and Orange Peel as Adsorbents. Mater Today Proc. 2023; 72: 92-8. [
Crossref] [
Google Scholar]
29. Zou C, Xu Z, Nie F, Guan K, Li J. Application of Hydroxyapatite-modified Carbonized Rice Husk for the Adsorption of Cr (VI) from Aqueous Solution. J Mol Liq. 2023; 371: 121137. [
Crossref] [
Google Scholar]
30. Rivas-San Vicente M, Plasencia J. Salicylic Acid Beyond Defence: Its Role in Plant Growth and Development. J Exp Bot. 2011; 62(10): 3321-38. [
Crossref] [
Google Scholar]
31. Shooryabi M, Abrishamchi P, Ganjeali A. Study of Salicylic Acid Effects on Germination, Growth and Some Physiological Parameters in Two Chickpea (Cicer Arietinum L.) Genotypes in Drought Stress Condition. Iran J Pulse Res. 2013; 4(2): 99-110. [
Google Scholar]
32. Delavari Parizi M, Baghizadeh A, Enteshari S, Manouchehri Kalantari K. The Study of the Interactive Effects of Salicylic Acid and Salinity Stress on Induction of Oxidative Stress and Mechanisms of Tolerance in Ocimum Basilicum L. Iran J Plant Biol. 2012; 4(12): 25-36. [
Google Scholar]
33. Abedi T, Gavanji S, Mojiri A. Lead and Zinc Uptake and Toxicity in Maize and Their Management. Plants. 2022; 11(15): 1922. [
Crossref] [
Google Scholar]
34. Lindsay WL, Norvell W. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci Soc Am J. 1978; 42(3): 421-8. [
Crossref] [
Google Scholar]
35. Besalatpour A, Hajabbasi M, Khoshgoftarmanesh A, Dorostkar V. Landfarming Process Effects on Biochemical Properties of Petroleum-Contaminated Soils. Soil Sediment Contam. 2011; 20(2): 234-48. [
Crossref] [
Google Scholar]
36. Šimková L, Fialová I, Vaculíková M, Luxová M. The Effect of Silicon on the Activity and Isozymes Pattern of Antioxidative Enzymes of Young Maize Roots Under Zinc Stress. Silicon. 2018; 10: 2907-10. [
Crossref] [
Google Scholar]
37. Zamani J, Hajabbasi MA, Mosaddeghi MR, Soleimani M, Shirvani M, Schulin R. Experimentation on Degradation of Petroleum in Contaminated Soils in the Root Zone of Maize (Zea Mays L.) Inoculated with Piriformospora Indica. Soil Sediment Contam. 2018; 27(1): 13-30. [
Crossref] [
Google Scholar]
38. Hamid Y, Tang L, Yaseen M, Hussain B, Zehra A, Aziz MZ, et al. Comparative Efficacy of Organic and Inorganic Amendments for Cadmium and Lead Immobilization in Contaminated Soil Under Rice-wheat Cropping System. Chemosphere. 2019; 214: 259-68. [
Crossref] [
Google Scholar]
39. Sharma A, Sidhu GP, Araniti F, Bali AS, Shahzad B, Tripathi DK, et al. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules. 2020; 25(3): 540. [
Crossref] [
Google Scholar]
40. Jalali SA, Zaefarian F, Hasanpour R, Abbasian A. Ability of Lead Phytoremediation by Sorghum (Sorghum Bicolor L.) Under the Application of Biochar and Salicylic Acid. Iran J Field Crop Sci. 2021; 52(4): 223-33. [
Google Scholar]
41. Molaei S, Shirani H, Hamidpour M, Shekofteh H, Besalatpour AA. Effect of Vermicompost, Pistachio Kernel and Shrimp Shell on Some Growth Parameters and Availability of Cd, Pb and Zn in Corn in a Polluted Soil. J Water Soil Sci. 2016; 19(74): 113-24. [
Crossref] [
Google Scholar]
42. Abbaspour A, Kalbasi M, Hajrasuliha S, Fotovat A. Effect of Organic Matter and Salinity on Ethylenediaminetetraacetic Acid-extractable and Solution Species of Cadmium and Lead in Three Agricultural Soils. Commun Soil Sci Plant Anal. 2008; 39(7-8): 983-1005. [
Crossref] [
Google Scholar]
43. Zahedifar M, Moosavi AA. Assessing Cadmium Availability of Contaminated Saline-sodic Soils as Influenced by Biochar Using the Adsorption Isotherm Models. Arch Agron Soil Sci. 2020; 66(12): 1735-52. [
Crossref] [
Google Scholar]
44. Azadi N, Raiesi F. Salinity-induced Changes in Cadmium Availability Affect Soil Microbial and Biochemical Functions: Mitigating Role of Biochar. Chemosphere. 2021; 274: 129924. [
Crossref] [
Google Scholar]
45. Sharma P, Tripathi S, Sirohi R, Kim SH, Ngo HH, Pandey A. Uptake and Mobilization of Heavy Metals Through Phytoremediation Process from Native Plants Species Growing on Complex Pollutants: Antioxidant Enzymes and Photosynthetic Pigments Response. Environ Technol Innov. 2021; 23: 101629. [
Crossref] [
Google Scholar]
46. Azcón R, Perálvarez M, Biró B, Roldán A, Ruíz-Lozano JM. Antioxidant Activities and Metal Acquisition in Mycorrhizal Plants Growing in a Heavy-metal Multicontaminated Soil Amended with Treated Lignocellulosic Agrowaste. Appl Soil Ecol. 2009; 41(2): 168-77. [
Crossref] [
Google Scholar]
47. Yu X, Shoaib M, Cheng X, Cui Y, Hussain S, Yan J, et al. Role of Rhizobia in Promoting Non-enzymatic Antioxidants to Mitigate Nitrogen-deficiency and Nickel Stresses in Pongamia Pinnata. Ecotoxicol Environ Saf. 2022; 241: 113789. [
Crossref] [
Google Scholar]
48. Zheng X, Zhang B, Lai W, Wang M, Tao X, Zou M, et al. Application of Bovine Bone Meal and Oyster Shell Meal to Heavy Metals Polluted Soil: Vegetable Safety and Bacterial Community. Chemosphere. 2023; 313: 137501. [
Crossref] [
Google Scholar]
49. Zhang H, Sun X, Hwarari D, Du X, Wang Y, Xu H, et al. Oxidative Stress Response and Metal Transport in Roots of Macleaya Cordata Exposed to Lead and Zinc. Plants. 2023; 12(3): 516. [
Crossref] [
Google Scholar]
50. Riyazuddin R, Nisha N, Ejaz B, Khan MI, Kumar M, Ramteke PW, et al. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules. 2022; 12(1): 43. [
Crossref] [
Google Scholar]