1. Panizza M, Cerisola G. Applicability of Electrochemical Methods to Carwash Wastewaters for Reuse. Part 2: Electrocoagulation and Anodic Oxidation Integrated Process. J. Electroanal. Chem. 2010; 638: 236-40. [
Crossref] [
Google Scholar]
2. Nadzirah Z, Nor Haslina H, Rafidah H. Removal of Important Parameter from Carwash Wastewater-A Review. Appl. Mech. Mater. 2015; 773: 1153-7. [
Crossref] [
Google Scholar]
3. Priya M, Jeyanthi J. Removal of COD, Oil and Grease from Automobile Wash Water Effluent Using Electrocoagulation Technique. Microchemical Journal. 2019; 150: 10470. [
Crossref] [
Google Scholar]
4. Shahidan S, Senin MS, Kadir ABA, Yee LH, Ali N. Properties of Concrete Mixes with Carwash Wastewater. MATEC Web Conference. 2017: 87. [
Crossref] [
Google Scholar]
5. Daneshvar N, Oladegaragoze A, Djafarzadeh N. Decolorization of Basic Dye Solutions by Electrocoagulation: An Investigation of the Effect of Operational Parameters. J. Hazard. Mater. 2006; 129: 116-22. [
Crossref] [
Google Scholar]
6. Can OT, Kobya M, Demirbas E, Bayramoglu M. Treatment of the Textile Wastewater by Combined Electrocoagulation. Chemosphere. 2006; 62: 181-7. [
Crossref] [
Google Scholar]
7. Zaroual Z, Azzi M, Saib N, Chaînet E. Contribution to the Study of Electrocoagulation Mechanism in Basictextile Effluent. J. Hazard. Mater. 2006; 131: 73-8. [
Crossref] [
Google Scholar]
8. Merzouk B, Madani Kh, Sekki A. Using Electrocoagulation-Electroflotation Technology to Treat Synthetic Solution and Textile Wastewater, Two Case Studies. Desalination. 2010; 250: 573-7. [
Crossref] [
Google Scholar]
9. Zaied M, Bellakhal N. Electrocoagulation Treatment of Black Liquor from Paper Industry. J. Hazard. Mater. 2009; 1639: 995-1000. [
Crossref] [
Google Scholar]
10. Kobya M, Can OT, Bayramoglu M. Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes. J. Hazard. Mater. 2003; 100(1-3): 163-78. [
Crossref] [
Google Scholar]
11. Balla W, Essadkia AH, Gouricha B, Dassaa A, Chenik H, Azzi M. Electrocoagulation/ Electroflotation of Reactive, Disperse and Mixture Dyes in an External-Loop Airlift Reactor. J. Hazard. Mater. 2010; 184: 710-6. [
Crossref] [
Google Scholar]
12. Bayramoglu M, Kobya M, Can OT, Sozbir M. Operating Cost Analysis of Electrocoagulation of Textile Dye Wastewater. Sep Pur. Tech. 2004; 37: 117-25. [
Crossref] [
Google Scholar]
13. Alinsafi A, Khemis M, Pons MN, Leclerc JP, Yaacoubi A, Benhammou A, Nejmeddine A. Electrocoagulation of Reactive Textile Dyes and Textile Wastewater. Chemical Engineering and Processing: Proces Intensification. 2005; 44: 461-70. [
Crossref] [
Google Scholar]
14. Rahmani A, Samarghandi MR. Electrochemical Removal of COD from Effluents. J. Water and Wastewater. 2007; 64: 9-20. (In Persian). [
Article]
15. Mehdipoor MA, Moosavirad SM. Effect of the Holed Ferrum Electrodes (HFE) on the Efficiency of the Electrocoagulation Process for Copper Recovery and Optimization of Parameters Using RSM. Hydrometallurgy. 2020; 194: 10313. [
Crossref]
16. Mollah M, Morkovsky P, Gomes JA, Kesmez M, Parga J, Cocke DL. Fundamentals, Present and Future Perspectives of Electrocoagulation. J. Hazard. Mater. 2004; 114: 199-210. [
Crossref] [
PubMed]
17. Hasanzadeh-Sabloue A, Moosavirad SM. Hardness and Chloride Removal in Dewatering System: Modeling and Optimization of Electrochemical Reaction. Adv. Environ. Tech. 2022; 6: 251-65. [
Google Scholar]
18. Chen G. Electrochemical Technologies in Wastewater Treatment. Sep. Pur. Tech. 2004; 38: 11-41. [
Crossref] [
Google Scholar]
19. Janssen LJJ, Koene L. The Role of Electrochemistry and Electrochemical Technology in Nvironmental Protection. Chem. Eng. 2002; 85: 137-46. [
Crossref] [
Google Scholar]
20. Acharya S, Sharma SK, Chauhan G, et al. Statistical Optimization of Electrocoagulation Process for Removal of Nitrates Using Response Surface Methodology. Indian Chem. Engineer. 2017; 36: 1-16. [
Google Scholar]
21. Sudamalla P, Saravanan P, Matheswaran M. Optimization of Operating Parameters Using Response Surface Methodology for Adsorption of Crystal Violet by Activated Carbon Prepared from Mango Kernel. Sust. Environ. Res. 2012; 22: 1-7. [
Google Scholar]
22. Güçlüa D. Optimization of Electrocoagulation of Pistachio Processing Wastewaters Using the Response Surface Methodology. Desalin. Water Treat. 2015; 54: 3338-47. [
Crossref] [
Google Scholar]
23. Dindarloo A, Dastoorani M. Evaluation of Effluent Treatment Effluent by Activated Sludge Method for Quality of Effluent for Irrigation Purposes (Case Study: Kermanshah Wastewater Treatment Plant). J Water and Sus Development. 2017; 4(2): 31-40. [
Article]
24. Montgomery DC, Myers RH, Carter Jr WH, Vining GG. The Hierarchy Principle in Designed Industrial Experiments. Quality and Reliability Engineering International. 2005; 21(2): 197-201. [
Crossref] [
Google Scholar]
25. Asaithambi P, Abdul-Aziz A, Wan Daud WM AB. Integrated Ozone-Electrocoagulation Process for the Removal of Pollutant from Industrial Effluent: Optimization Through Response Surface Methodology. Chem. Eng. Process. 2016; 105: 92-102. [
Crossref] [
Google Scholar]
26. Huda N, Raman AAA, Bello MM, Ramesh S. Electrocoagulation Treatment of Raw Landfill Leachate Using Iron-Based Electrodes: Effects of Process Parameters and Optimization. J. Environ. Manage. 2017; 204: 75-81. [
Crossref] [
Google Scholar]
27. Moosavirad SM. Increasing Efficiency of Thickener Operation in Concentrate Plant of Iron Ore Mine Using Coagulation-Flocculation. J. Adv. Environ. Health Res. 2017; 4: 146-54. [
Google Scholar]
28. Xiarchos I, Jaworska A, Zakrzewska-Trznadel G. Response Surface Methodology for the Modelling of Copper Removal from Aqueous Solutions Using Micellar-Enhanced Ultrafiltration. J. Membr. Sci. 2008; 321: 222-31. [
Crossref] [
Google Scholar]
29. Mu Y, Zheng XJ, Yu HQ. Determining Optimum Conditions for Hydrogen Production from Glucose by an Anaerobic Culture Using Response Surface Methodology (RSM). International J. Hydrogen Energy. 2009; 34: 7959-63. [
Crossref] [
Google Scholar]
30. Montgomery DC. Design and Analysis of Experiments. Publisher: John Wiley & Sons. 2017. [
Google Scholar]
31. Metcalf SI. Wastewater Engineering: Treatment, Disposal, Reuse. Newyork: McGraw-Hill. 2003.
32. Demim S, DrouicheN, Aouabed A, Benayad T, Couderchet M, Semsari S. Study of Heavy Metal Removal from Heavy Metal Mixture Using the CCD Method. J. Ind. Eng. Chem. 2014; 20: 512-20. [
Crossref] [
Google Scholar]
33. Ghanim AN. Application of Response Surface Methodology to Optimize Nitrate Removal from Wastewater by Electrocoagulation. Int. J. Sci. Eng. Res. 2013; 4: 1410-6. [
Crossref] [
Google Scholar]
34. Nawarkar CJ, Salkar VD. Solar Powered Electrocoagulation System for Municipal Wastewater Treatment. Fuel. 2019; 237: 222-6. [
Crossref] [
Google Scholar]
35. Garg KK, Prasad B. Development of Box Behnken Design for Treatment of Ter-Ephthalic Acid Wastewater by Electrocoagulation Process: Optimization of Process and Analysis of Sludge. J. Environ. Chem. Eng. 2016; 4(1): 178-90. [
Crossref] [
Google Scholar]
36. Cañizares P, Jiménez C, Martínez F, Sáez C, Rodrigo MA. Study of the Elec- Trocoagulation Process Using Aluminum and Iron Electrodes. Ind. Eng. Chem. Res. 2007; 46(19): 6189-95. [
Crossref] [
Google Scholar]
37. Rahmani A. Survey of Electrocoagulation Process for COD Removal from Wastewater. J. Water Wastewater. 2009; 64: 9-14. (In Persian).
38. Gao S, Yang J, Tian J, Ma F, Tu G, Du M. Electro-Coagulation-Flotation Process for Algae Removal. J. Hazard. Mater. 2010; 177: 336-43. [
Crossref] [
Google Scholar]
39. Barrera-Díaz C, Bilyeu B, Roa G, Bernal-Martinez L. Physicochemical Aspects of Electrocoagulation. Sep. Purif. Rev. 2011; 40: 1-24. [
Crossref] [
Google Scholar]
40. Barrera Díaz CE, González-Rivas N. The Use of Al, Cu, and Fe in an Integrated Electrocoagulation-Ozonation Process. J. Chem. 2015: 1-6. [
Crossref] [
Google Scholar]
41. Safari S, Azadi Aghdam M, Kariminia HR. Electrocoagulation for COD and Diesel Removal from Oily Wastewater. Int. J. Environ. Sci. Technol. 2016; 13: 231-42. [
Crossref] [
Google Scholar]
42. Emamjomeh MH, Sivakumar M. Review of Pollutants Removal by Electrocoagulation and Electrocoagulation/Flotation Processes. J. Enviro. Manage. 2009; 90: 1663-79. [
Crossref] [
Google Scholar]