1. Najgebauer Lejko D, Sady M. Estimation of the Antioxidant Activity of the Commercially Available Fermented Milks. Acta Sci Pol Technol Aliment. 2015;14(4): 387–96. [
Crossref] [
Google Scholar]
2. Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC. Microbiological, Physicochemical, and Sensory Characteristics of Kefir During Storage. Food Chem. 2005; 90(4): 613-20. [
Crossref] [
Google Scholar]
3. Koohian F, Shahbazi Gahrouei D, Koohiyan M, Shanei A. The Radioprotective Effect of Ascorbic Acid and Kefir against Genotoxicity Induced by Exposure in Mice Blood Lymphocytes. Nutr Cancer. 2020:1-7. [
Crossref] [
Google Scholar]
4. Marsh AJ, Hill C, Ross RP, Cotter PD. Fermented Beverages with Health-Promoting Potential: Past and Future Perspectives. Trends Food Sci Technol. 2014; 38(2): 113-24. [
Crossref] [
Google Scholar]
5. Gibson GR. Food Science and Technology Bulletin. IFIS Publishing; 2006. [
Google Scholar]
6. Dimitreli G, Antoniou KD. Effect of Incubation Temperature and Caseinates on The Rheological Behaviour of Kefir. Procedia Food Sci. 2011; 1: 583-8. [
Crossref] [
Google Scholar]
7. Özdemir N, Kök Taş T, Guzel Seydim Z. Effect of Gluconacetobacter spp. on Kefir grains and Kefir Quality. Food Sci Biotechnol. 2015; 24(1): 99-106. [
Crossref] [
Google Scholar]
8. Chen MJ, Tang HY, Chiang ML. Effects of Heat, Cold, Acid and Bile Salt Adaptations on the Stress Tolerance and Protein Expression of Kefir-Isolated Probiotic Lactobacillus Kefiranofaciens M1. Food Microbiol. 2017; 66: 20-7. [
Crossref] [
Google Scholar]
9. Cuttler JM. Resolving the Controversy Over Beneficial Effects of Ionizing Radiation. Wonuc Conference on the Effects of Low and Very Low Doses of Ionizing Radiation on Health Organized by the World Council of Nuclear Workers, Held inVersailles, France. 1999: 16-8. [
Google Scholar]
10. Skok J, Chorney W, Rakosnik Jr EJ. An Examination of Stimulatory Effects of Ionizing Radiation in Plants. Radiat Botany. 1965; 5(4): 281-92. [
Crossref] [
Google Scholar]
11. Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, et al. Dose and Dose-Rate Effects of Ionizing Radiation: A Discussion in the Light of Radiological Protection. Radiat Environ Biophys. 2015; 54(4): 379-401. [
Crossref] [
Google Scholar]
12. Mortazavi SJ, Ikushima T, Mozdarani H. An Introduction to Radiation Hormesis. Available from: URL: http://www. angelfire. com/mo/radioadaptive/inthorm. html, access at. 2004; 18(05). [
Google Scholar]
13. Feinendegen LE. Evidence for Beneficial Low Level Radiation Effects and Radiation Hormesis. Br J Radiol. 2005; 78(925): 3-7. [
Crossref] [
Google Scholar]
14. Bhakta Guha D, Efferth T. Hormesis: Decoding Two Sides of the Same Coin. Pharmaceuticals. 2015; 8(4): 865-83. [
Crossref] [
Google Scholar]
15. Bryan R, Jiang Z, Friedman M, Dadachova E. The Effects of Gamma Radiation, Uv and Visible Light on Atp Levels in Yeast Cells Depend on Cellular Melanization. Fungal Biol. 2011; 115(10): 945-9. [
Crossref] [
Google Scholar]
16. Robertson KL, Mostaghim A, Cuomo CA, Soto CM, Lebedev N, Bailey RF, et al. Adaptation of the Black Yeast Wangiella Dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms. Plos One. 2012; 7(11): e48674. [
Crossref] [
Google Scholar]
17. Parvaneh V. Quality Control and Chemical Analysis of Food. 8th ed. Iran: University of Tehran Press; 2019.
18. Mozzi F, Raya RR, Vignolo GM. Biotechnology of Lactic Acid Bacteria Novel Applications. 1 ed. Wiley Blackmail.. 2010. [
Crossref]