Volume 1, Issue 2 (3-2016)                   jhehp 2016, 1(2): 87-98 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimani N, Mohammadian Fazli M, Ramazani A, Mehrasbi M R. Application of Live, Dead and Dried Biomasses of Aspergillus Versicolor for Cadmium Biotreatment. jhehp 2016; 1 (2) :87-98
URL: http://jhehp.zums.ac.ir/article-1-31-en.html
1- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
2- Department of Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
Abstract:   (13148 Views)

Background: Various industries produce and discharge wastes containing different heavy metals into the environment. Apart from using living biomass, dead and dried biomasses have been introduced as a new field of biotreatment technology.
Method: The cadmium (Cd) (II) removal characteristics of live (growing), dead (autoclaved), and oven-dried biomasses of Aspergillus versicolor were examined as a function of initial pH, contact time, and initial Cd concentration.
Result: Maximum bioaccumulation of Cd for live biomass [11.63 (mg g¹)] occurred at an optimal pH of 4 and incubation time of 4 days. Themaximum biosorption of 27.56 (mg g¹) for dead biomass occurred at 1.5 h and at a pH of 4. The maximum biosorption [18.08 (mg g¹)] with dried biomass was reached at an equilibrium time of 3 h at a pH of 6.
Conclusion: The present study confirmed that heat treatment promoted the removal capacity of fungi. Cd removal was increased by decreasing the pH in live and dead-mode experiments. Inversely, Cd removal was increased with increasing pH for the dried biomass of A. versicolor. Varying responses to environmental conditions (pH and contact time) clearly proved the different removal mechanisms used by three biomasses of A. versicolor. Higher Cd concentration increased the removal ability of three types of biomasses. The results indicated that all biomasses of A. versicolor used in this study, particularly dead biomass, are a suitable biosorbent for the removal of Cd (II) ions from aqueous solution.

 

Keywords: Dead, Dried, Live, Fung, Bioremoval
Full-Text [PDF 617 kb]   (8618 Downloads)    
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2015/09/25 | Accepted: 2015/12/2 | Published: 2016/01/27

References
1. Wang J, Chen C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol Adv. 2009 ; 27(2):195-226. [Crossref]
2. Chojnacka K. Biosorption and Bioaccumulation–the Prospects for Practical Applications. Environ Int. 2010; 36(3): 299-307. [Crossref]
3. Volesky B. Biosorption and me. Water Res. 2007; 41(18): 4017-29. [Crossref]
4. Volesky B, Holan ZR. Biosorption of Heavy Metals. Biotechnol Prog. 1995;11(3): 235-50. [Crossref]
5. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. Remediation Technologies for Heavy Metal Contaminated Groundwater. J Environ Manag. 2011; 92(10): 2355-88. [Crossref]
6. Srivastava NK, Majumder CB. Novel Biofiltration Methods for the Treatment of Heavy Metals from Industrial Wastewater. J Hazard Mater. 2008; 151(1): 1-8. [Crossref]
7. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on Potential Applications of Biomass for the Separation of Heavy Metals from Water and Wastewater. Biochem Eng J. 2009; 44(1): 19-41. [Crossref]
8. Pacheco PH, Gil RA, Cerutti SE, Smichowski P, Martinez LD. Biosorption: A New Rise for Elemental Solid Phase Extraction Methods. Talanta. 2011; 85(5): 2290-300. [Crossref]
9. Dhankhar R, Hooda A. Fungal Biosorption–an Alternative to Meet the Challenges of Heavy Metal Pollution in Aqueous Solutions. Environ Technol. 2011; 32(5): 467-91. [Crossref]
10. Kavamura VN, Esposito E. Biotechnological Strategies Applied to the Decontamination of Soils Polluted with Heavy Metals. Biotechnol Adv. 2010; 28(1): 61-9. [Crossref]
11. Anahid S, Yaghmaei S, Ghobadinejad Z. Heavy Metal Tolerance of Fungi. Sci Iran. 2011;18(3): 502-8. [Crossref]
12. Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC. Chromium Removal from a Real Tanning Effluent by Autochthonous and Allochthonous Fungi. Bioresour Technol. 2009; 100(11): 2770-6. [Crossref]
13. Kacprzak M, Malina G. The tolerance and Zn2+, Ba2+ and Fe3+ Accumulation by Trichoderma Atroviride and Mortierella Exigua Isolated from Contaminated Soil. Can J Soil Sci. 2005; 85(2): 283-90. [Crossref]
14. Słaba M, Długoński J. Efficient Zn2+ and Pb2+ Uptake by Filamentous Fungus Paecilomyces Marquandii with Engagement of Metal Hydrocarbonates Precipitation. Int Biodeterior Biodegradation. 2011; 65(7): 954-60. [Crossref]
15. Zhou JL. Zn Biosorption by Rhizopus Arrhizus and other Fungi. Appl Microbiol Biotechnol. 1999; 51(5): 686-93. [Crossref]
16. Ezzouhri L, Ruiz E, Castro E, Moya M, Espínola F, Cherrat L, et al. Mechanisms of Lead Uptake by Fungal Biomass Isolated from Heavy Metals Habitats. Afinidad. 2010; 67(545).
17. Filipović-Kovačević Ž, Sipos L, Briški F. Biosorption of Chromium, Copper, Nickel and Zinc Ions on to Fungal Pellets of Aspergillus Niger 405 from Aqueous Solutions. Food Technol Biotechnol. 2000; 38(3): 211-6.
18. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, et al. Biosorption of Cadmium by Endophytic Fungus (EF) Microsphaeropsis sp. LSE10 Isolated from Cadmium Hyperaccumulator Solanum Nigrum L. Bioresour Technol. 2010; 101(6): 1668-74. [Crossref]
19. Ghorbani F, Younesi H, Ghasempouri SM, Zinatizadeh AA, Amini M, Daneshi A. Application of Response Surface Methodology for Optimization of Cadmium Biosorption in an Aqueous Solution by Saccharomyces Cerevisiae. Chem Eng J. 2008; 145(2): 267-75. [Crossref]
20. Svecova L, Spanelova M, Kubal M, Guibal E. Cadmium, Lead and Mercury Biosorption on Waste Fungal Biomass Issued from Fermentation Industry. I. Equilibrium Studies. Sep Purif Technol. 2006; 52(1): 142-53. [Crossref]
21. Yuan H, Li Z, Ying J, Wang E. Cadmium (II) Removal by a Hyperaccumulator Fungus Phoma sp. F2 Isolated from Blende Soil. Curr Microbiol. 2007; 55(3): 223-7. [Crossref]
22. Zafar S, Aqil F, Ahmad I. Metal Tolerance and Biosorption Potential of Filamentous Fungi Isolated from Metal Contaminated Agricultural Soil. Bioresour Technol. 2007; 98(13): 2557-61. [Crossref]
23. Li XM, Liao DX, Xu XQ, Yang Q, Zeng GM, Zheng W, et al. Kinetic Studies for the Biosorption of Lead and Copper Ions by Penicillium Simplicissimum Immobilized within Loofa Sponge. J Hazard Mater. 2008; 159(2): 610-5. [Crossref]
24. Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y, et al. Characterization of Cd-and Pb-resistant Fungal Endophyte Mucor sp. CBRF59 Isolated from Rapes (Brassica chinensis) in a Metal-Contaminated Soil. J Hazard Mater. 2011; 185(2): 717-24. [Crossref]
25. Ge W, Zamri D, Mineyama H, Valix M. Bioaccumulation of Heavy Metals on Adapted Aspergillus Foetidus. Adsorption. 2011; 17(5): 901-10. [Crossref]
26. Bayramoğlu G, Arıca MY. Removal of Heavy Mercury (II), Cadmium (II) and Zinc (II) Metal Ions by Live and Heat Inactivated Lentinus Edodes Pellets. Chem Eng J. 2008; 143(1): 133-40. [Crossref]
27. Sharma S, Adholeya A. Detoxification and Accumulation of Chromium from Tannery Effluent and Spent Chrome Effluent by Paecilomyces Lilacinus Fungi. Int Biodeterior Biodegradation. 2011; 65(2): 309-17. [Crossref]
28. Malik A. Metal Bioremediation through Growing Cells. Environ Intl. 2004; 30(2): 261-78. [Crossref]
29. Melgar MJ, Alonso J, García MA. Removal of Toxic Metals from Aqueous Solutions by Fungal Biomass of Agaricus Macrosporus. Sci Total Environ. 2007; 385(1): 12-9. [Crossref]
30. Velmurugan N, Hwang G, Sathishkumar M, Choi TK, Lee KJ, Oh BT, et al. Isolation, Identification, Pb (II) Biosorption Isotherms and Kinetics of a Lead Adsorbing Penicillium sp. MRF-1 from South Korean Mine Soil. J Environ Sci. 2010; 22(7): 1049-56. [Crossref]
31. Ahluwalia SS, Goyal D. Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater. Bioresour Technol. 2007; 98(12): 2243-57. [Crossref]
32. Sanghi R, Sankararamakrishnan N, Dave BC. Fungal Bioremediation of Chromates: Conformational Changes of Biomass during Sequestration, Binding, and Reduction of Hexavalent Chromium Ions. J Hazard Mater. 2009; 169(1): 1074-80. [Crossref]
33. Javanbakht V, Zilouei H, Karimi K. Lead Biosorption by Different Morphologies of Fungus Mucor Indicus. Int Biodeterior Biodegradation. 2011; 65(2): 294-300. [Crossref]
34. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, et al. Biosorption of Cadmium by Endophytic Fungus (EF) Microsphaeropsis sp. LSE10 Isolated from Cadmium Hyperaccumulator Solanum Nigrum L. Bioresour Technol. 2010; 101(6): 1668-74. [Crossref]
35. Blaudez D, Botton B, Chalot M. Cadmium Uptake and Subcellular compartmentation in the ectomycorrhizal Fungus Paxillus Involutus. Microbiol. 2000;146(5): 1109-17. [Crossref]
36. Mishra A, Malik A. Simultaneous Bioaccumulation of Multiple Metals from Electroplating Effluent Using Aspergillus lentulus. Water Res. 2012 46(16): 4991-8. [Crossref]
37. Xu X, Xia L, Huang Q, Gu JD, Chen W. Biosorption of Cadmium by a Metal-Resistant Filamentous Fungus Isolated from Chicken Manure Compost. J Environ Technol. 2012; 33(14): 1661-70. [Crossref]
38. Kratochvil D, Volesky B. Advances in the Biosorption of Heavy Metals. Trends Biotechnol. 1998; 16(7): 291-300. [Crossref]
39. Price MS, Classen JJ, Payne GA. Aspergillus Niger Absorbs Copper and Zinc from Swine Wastewater. Bioresour Technol. 2001;77(1):41-9. [Crossref]
40. Yan G, Viraraghavan T. Effect of Pretreatment on the Bioadsorption of Heavy Metals on Mucor Rouxii. Water SA-Pretoria. 2000; 26(1): 119-24.
41. Salinas E, Elorza de Orellano M, Rezza I, Martinez L, Marchesvky E, Sanz de Tosetti M. Removal of Cadmium and Lead from Dilute Aqueous Solutions by< i> Rhodotorula Rubra. Bioresour Technol. 2000; 72(2): 107-12. [Crossref]
42. Miransari M. Hyperaccumulators, Arbuscular Mycorrhizal Fungi and Stress of Heavy Metals. Biotechnol Adv. 2011; 29(6): 645-53. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb