XML Print


1- Department of Applied Microbiology and Brewery, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
Abstract:   (145 Views)
Background: Bacterial contamination of the Gynecology ward is a public health concern because it is the primary cause of nosocomial infections in postpartum moms and one of the primary risk factors for sepsis in newborns. This study evaluated the bacterial contamination of fomites, nostrils, and palms of healthcare workers in the Gynecology ward.
Methods: A total of 244 samples were collected and cultured on Blood, Mannitol salt, and MacConkey agar. Standard biochemical tests were carried out to characterize the organisms. Antibiotic susceptibility patterns of the isolates were carried out using the Kirby-Bauer disc diffusion method.
Results: Out of the 244 samples, 95(38.93%) yielded bacterial growth. Of these, 75 isolates (40.76%) were isolated from fomites, while 20 (33.33%) were isolated from the palms of hands and nostrils of healthcare workers. The most common bacterial isolate was Staphylococcus aureus (46 isolates 48.42%), whereas the least common was Streptococcus spp. (1isolates 1.05%). The Gram-negative bacterial isolates were resistant to Ceftriaxone, Cefuroxime, Cotrimoxazole, and Ceftazidine. The Gram-positive bacterial isolates were resistant to Ampicillin, Ciprofloxacin, Augmentin, Ceftazidine, and Cephalexin.
Conclusion: This study revealed the presence of bacterial pathogens on fomites and within the nostrils of healthcare workers in the Gynecology ward, underscoring the necessity for regular monitoring of bacterial contamination in these environments.
     
Type of Study: Original Article | Subject: Environmental Health, Sciences, and Engineering
Received: 2025/05/1 | Accepted: 2025/06/22 | Published: 2025/07/12

References
1. Abubakar, A. S., Barma, M. M., Balla, H. J., Tanimu, Y. S., Waru, G. B., & Dibal, J. (2014). Spectrum of bacterial isolates among intensive care unit patients in a tertiary hospital in northeastern Nigeria. Indian Journal of Science Resources and Technology, 2(6), 42-47.
2. Acharya, T. (2024). Carbohydrate fermentation test: Uses, principle, procedure, results. https://microbeonline.com/carbohydrate-fermentation-test-uses-principle-procedure-results/
3. Adam, A. S., Nkatha, M. L., Onkoba, S. K., Ntulume, I., Aliero, A. A., & Namatovu, A. (2020). Antibiotic susceptibility pattern and detection of mecA gene in methicillin-resistant staphylococcus epidermidis isolated from wards surfaces of Kampala international university teaching hospital, Uganda. Romanian Archives of Microbiology and Immunology, 79(1), 24-36.
4. Aygan , A., & Arikan, B. (2007). An overview on bacterial motility detection. International Journal of Agriculture and Biology, 9(1), 193-196.
5. Beggs, C., Knibbs, L. D., Johnson, G. R., & Morawska, L. (2015). Environmental contamination and hospital-acquired infection: Factors that are easily overlooked. Indoor Air, 25, 462-474. [Crossref]
6. Bennett, K., & Sharp, S. E. (2008). Rapid differentiation of methicillin-resistant staphylococcus aureus and methicillin-susceptible staphylococcus aureus from blood cultures by use of a direct cefoxitin disk diffusion test. Journal of Clinical Microbiology, 46(11), 3836-3838. [Crossref]
7. Benson, H. J. (2002). Microbiological applications: Laboratory manual in general microbiology. 8th edition. McGraw Hill, 4.
8. Bhatta, D. R., Hamal, D., Shrestha, R., Subramanya, S. H., Baral, N., Singh, R. K., . . . & Gokhale, S. (2018). Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: How safe are our hands? Antimicrobial Resistance and Infection Control, 7, 97. [Crossref]
9. Bitew, K., Gidebo, D. D., & Ali, M. M. (2021). Bacterial contamination rates and drug susceptibility patterns of bacteria recovered from medical equipment, inanimate surfaces, and indoor air of a neonatal intensive care unit and pediatric ward at Hawassa university comprehensive specialized hospital, Ethiopia. IJID Regions, 1, 27-33. [Crossref]
10. Cheesbrough, M. (2006). District laboratory practice in tropical countries. ELBS edition. University Cambridge, 143-157. [Crossref]
11. Claro, T., O'Reilly, M., Daniels, S., & Humphreys, H. (2015). Surface microbial contamination in hospitals: A pilot study on methods of sampling and the use of proposed microbiologic standards. American Journal of Infection Control, 43(9), 1000-1002. [Crossref]
12. CLSI. (2011). Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement, in CLSI document M100-S21. https://webstore.ansi.org/preview-pages/CLSI/preview_M100-S21.pdf
13. Danelli, T., Duarte, F. C., de Oliveira, T. A., de Silva, R. S., Alfieri, D. F., Gonçalves, G. B., . . . & Yamada-Ogatta, S. F. (2020). Nasal carriage by Staphylococcus aureus among healthcare workers and students attending a university hospital in southern Brazil: Prevalence, phenotypic, and molecular characteristics. Interdisciplinary Perspectives on Infectious Diseases, 2020(1), 1-11. [Crossref]
14. Daneman, N., Sarwar, S., Fowler, R. A., & Cuthbertson, B. H. (2013). Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infectious Diseases, 13(4), 328-341. [Crossref]
15. Essien, U. C., Sheyin, Z., Sali, T., Ede, F. R., & Bigwan, E. I. (2017). Bacterial contamination on hospital surfaces in Bingham university teaching hospital Jos, North central, Nigeria. World Journal of Pharmaceutical and Life Sciences, 3(6), 82-85.
16. Jorgensen, J. H., & Turnidge, J. D. (2007). Susceptibility test methods: Dilution and disk diffusion methods. 9th edition. Manual of clinical microbiology (pp. 1152-1172). ASM Press.
17. Kalu, M. U., Nwankwo, E. O., & Okey-kalu, E. U. (2023). Bacterial contamination of labor wards and delivery rooms from selected primary healthcare facilities in Abia state. Suan Sunandha Science and Technology Journal, 10(1), 46-53. [Crossref]
18. Khosravi , A. D., Hoveizavi, H., & Farshadzadeh, Z. (2012). The prevalence of genes encoding leukocidins in Staphylococcus aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani hospital, Ahvaz, Iran. Burns, 38(2), 247-251. [Crossref]
19. Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Reports, 122, 160-166. [Crossref]
20. Kramer, A., Schwebke, I., & Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases, 6, 1-8. [Crossref]
21. Mehta, Y., Hegde, A., Pande, R., Zirpe, K. G., Gupta, V., Ahdal, J., . . . & Jain, R. (2020). Methicillin-resistant Staphylococcus aureus in intensive care unit setting of India: A review of clinical burden, patterns of prevalence, preventive measures, and future strategies. Indian Journal of Critical Care Medicine, 24(1), 55-62. [Crossref]
22. Miragaia, M. (2018). Factors contributing to the evolution of mecA-mediated β-lactam resistance in staphylococci: Update and new insights from whole genome sequencing (WGS). Frontiers in Microbiology, 9, 2723. [Crossref]
23. Montero, J. G., Lerma, F. Á., Galleymore, P. R., Martínez, M. P., Rocha, L. Á., Gaite, F. B., . . . & Scientific Expert Committee for the “Zero Resistance” Project. (2015). Combatting resistance in intensive care: The multimodal approach of the Spanish ICU “Zero Resistance” program. Critical Care, 19, 1-8. [Crossref]
24. Munveshyaka, E., Cyuzuzo, P., Yadufashije, C., & Karemera, J. (2021). Contribution of medical wards contamination to wound infection among patients attending Ruhengeri referral hospital. International Journal of Microbiology, 2021, 1-7. [Crossref]
25. Omo-Aghoja, L. O., Aisien, O. A., Akuse, J. T., Bergstrom, S., & Okonofua, F. E. (2010). Maternal mortality and emergency obstetric care in Benin city, South-south Nigeria. Journal of Clinical Medicine and Research, 2(4), 55-60.
26. Pant, N. D., & Sharma, M. (2016). Carriage of methicillin resistant Staphylococcus aureus and awareness of infection control among health care workers working in Intensive care unit of a hospital in Nepal. Brazillian Journal of Infectious Disease, 20(2), 218-219. [Crossref]
27. Patel, M., Thomas, H. C., Room, J., Wilson, Y., Kearns, A., & Gray, J. (2013). Successful control of nosocomial transmission of the USA300 clone of community-acquired methicillin-resistant Staphylococcus aureus in a UK pediatric burns centre. Journal of Hospital Infection, 84(4), 319-322. [Crossref]
28. Rai, J. R., Amatya, R., & Rai, S. K. (2022). Hand and nasal carriage of Staphylococcus aureus and its rate of recolonization among healthcare workers of a tertiary care hospital in Nepal. JAC-Antimicrobial Resistance, 4(3), 1-5. [Crossref]
29. Rodrigues, D. O., da Paixão Peixoto, L., Barros, E. T. M., Guimarães, J. R., Gontijo, B. C., Almeida, J. L., . . . & Camara, D. S. (2019). Epidemiology of bacterial contamination of inert hospital surfaces and equipment in critical and non-critical care units: A Brazilian multicenter study. Microbiology Research Journal International, 10(15), 1-25.
30. Saadi, S., Allem, R., Sebaihia, M., Merouane, A., & Bakkali, M. (2022). Bacterial contamination of neglected hospital surfaces and equipment in an Algerian hospital: An important source of potential infection. International Journal of Environmental Health Research, 32(6), 1373-1381. [Crossref]
31. Sanusi, A, A., Dangari, M. A., Salihu, M. K., & Ado, A. (2023). Molecular detection of mecA gene in Methicillin resistant Staphylococcus aureus isolated from surfaces of some public hospitals in Katsina state, Nigeria. UMYU Journal of Microbiology Research, 8(2), 110-117. [Crossref]
32. Sapkota, A. (2022). Citrate utilization test-principle, procedure, results, uses. https://microbenotes.com/citrate-utilization-test-principle-procedure-and-result-interpretation
33. Shittu, A. O., Okon, K., Adesida, S., Oyedara, O., Witte, W., Strommenger, B., . . . & Nübel, U. (2011). Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiology, 11(1), 92. [Crossref]
34. Uneke, C. J., Ndukwe, C. D., Nwokpu, K. O., Nnobu, R. C., Ugwuoru, C. D., & Prosopa-Plaizier, N. (2014). Stethoscope disinfection campaign in a Nigerian teaching hospital: results of a before and after study. The Journal of Infection in Developing Countries, 8(1), 86-93. [Crossref]
35. Walana, W., Bobzah, B. P., Kuugbee, E. D., Acquah, S., Ezekiel, V. K., Yabasin, I. B., . . . & Ziem, J. B. (2020). Staphylococcus aureus nasal carriage among healthcare workers, inpatients and caretakers in the Tamale teaching hospital, Ghana. Scientific African, 8, e00325. [Crossref]
36. Wolde, W., Mitiku, H., Sarkar, R., & Shume, T. (2023). Nasal carriage rate of Staphylococcus aureus, its associated factors, and antimicrobial susceptibility pattern among health care workers in public hospitals, Harar, eastern Ethiopia. Infection and Drug Resistance, 16, 3477-3486. [Crossref]
37. Zaragoza, R., Ramírez, P., & López-Pueyo. M. J. (2014). Infection nosocomial en las unidades de cuidados intensivos nosocomial infections in intensive care units. Enfermedades Infecciosas Microbiologia Clinica, 32(5), 320-327. [Crossref]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 The Author(s)

© 2025 CC BY-NC 4.0 | Journal of Human Environment and Health Promotion

Designed & Developed by : Yektaweb