1. Farshadnia SM, Arghami S, Shahab SA, Majidi F. A Budgeting Model for the Safety Unit of an Under ConstructionMetro Station in Tehran Using a Robust Optimization. J Hum Environ Health Promot, 2018; 4(3): 131-7. [
Crossref]
2. Soltanzadeh A, Mohammadfam I, Moghimbeygi A, Ghiasvand R . Exploring Causal Factors on the Severity Rate of Occupational Accidents in Construction Worksites. Int J Civ Eng, 2017; 15(7): 959-65. [
Crossref]
3. Hinze JW, Teizer J. Visibility-Related Fatalities Related to Construction Equipment. Saf Sci. 2011; 49(5): 709-18. [
Crossref]
4. Kines P, Spangenberg S, Dyreborg J. Dyreborg, Prioritizing Occupational Injury Prevention in the Construction Industry: Injury Severity or Absence? J Saf Res, 2007; 38(1): 53-8. [
Crossref]
5. Mohammadfam I, Soltanzadeh A, Mahmoudi S, Moghimbeigi A. P154 Analytical Modelling of Occupational Accidents’ Size Using Structural Equation Modelling approach (SEM); A Field Study in Big Construction Industries. BMJ Publishing Group Ltd . 2016; 73: A172. [
Crossref]
6. Soltanzadeh A, Mohammadfam I, Moghimbeigi A, Ghiasvand R. Key Factors Contributing to Accident Severity Rate in Construction Industry in Iran: A Regression Modelling Approach. Arh Hig Rada Toksikol, 2016; 67(1): 47-53. [
Crossref]
7. Saffarzadeh M, Pooryari M. Accident Prediction Model Based on Traffic and Geometric Design Characteristics. Int J Civ Eng, 2005; 3(2): 112-9.
8. Sari M, Selcuk AS, Karpuz C, Duzgun HS. Stochastic Modeling of Accident Risks Associated with an Underground Coal Mine in Turkey. Saf Sci. 2009; 47(1): 78-87. [
Crossref]
9. Venkataraman N. Safety Performance Factor. Int J Occup Saf Ergon, 2008; 14(3): 327-31. [
Crossref]
10. Carrillo Castrillo JA, Trillo Cabello AF, Rubio Romero JC. Construction Accidents: Identification of the Main Associations between Causes, Mechanisms and Stages of the Construction Process. Int J Occup Saf Ergon. 2017; 23(2): 240-50. [
Crossref]
11. Mohammadfam I, Soltanzadeh A, Moghimbeigi A, Savareh BA. Analysis and Modeling of Threatening Factors of Workforce’s Health in Large-Scale Workplaces: Comparison of Four-Fitting Methods to Select Optimum Technique. Electron Physician. 2016; 8(2): 1918-26. [
Crossref]
12. Mohammadfam I, Soltanzadeh A, Moghimbeigi A, Akbarzadeh M. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries based on the Structural Equation Modeling: A Case Study in Large Construction Industries. Arch Trauma Res. 2016; 5(3): e33595. [
Crossref]
13. Chong HY, Low TS. Accidents in Malaysian Construction Industry: Statistical Data and Court CasesInt. J Occup Saf Ergon, 2014; 20(3): 503-13. [
Crossref]
14. Mitropoulos P, Abdelhamid TS, Howell GA. Systems Model of Construction Accident Causation. J Constr Eng Manag. 2005; 131(7): 816-25. [
Crossref]
15. Moghaddam FR, Afandizadeh S, Ziyadi M. Prediction of Accident Severity Using Artificial Neural Networks. Int J Civ Eng, 2011; 9(1): 41-8.
16. OSHA. Safety and Health Managment System eTool. OSHA. 2012.
17. Hinrichs A, Novak E, Ullrich M, Woźniakowski H. The Curse of Dimensionality for Numerical Integration of Smooth Functions. Math Comput. 2014; 83(290): 2853-63. [
Crossref]
18. Biesiada J, Duch W. Feature Selection for High-Dimensional Data—A Pearson Redundancy Based Filter, InComputer Recognition Systems 2. Springerlink. 2007: 242-9. [
Crossref]
19. Awodele O, Jegede O. Neural Networks and Its Application in Engineering. Sci IT, 2009: 83-95. [
Crossref]
20. Czarnecki WM, Osindero S, Jaderberg M, Swirszcz G, Pascanu R. Sobolev Training for Neural Networks. arXiv Preprint arXiv:1706.04859; 2017.
21. Berry MJ, Linoff GS. Data Mining Techniques: for Marketing, Sales, and Customer Relationship Management. 2nd ed. USA: John Wiley & Sons; 2011.
22. Soltanzadeh A, Mohammadfam I, Moghimbeygi A, Ghiasvand R. Exploring Causal Factors on the Severity Rate of Occupational Accidents in Construction Worksites. Int J Civ Eng, 2017; 15(7): 959-65. [
Crossref]
23. Mohammadfam I, Soltanzadeh A, Moghimbeigi A, Akbarzadeh M. Confirmatory Factor Analysis of Occupational Injuries: Presenting an Analytical Tool. Trauma Mon, 2017; 22(2): e33266. [
Crossref]
24. Mohammadfam I, Soltanzadeh A, Moghimbeigi A, Savareh BA. Use of Artificial Neural Networks (ANNs) for the Analysis and Modeling of Factors That Affect Occupational Injuries in Large Construction Industries. Electron Physician, 2015; 7(7): 1515-22. [
Crossref]
25. Soltanzadeh A, Mohammadfam I, Moghimbeigi A. P153 Predicting and Determining Factors of Occupational Accidents Severity Rate (ASR) Using Artificial Neural Networks (ANN); A Case Study in Construction Industry. BMJ Publishing Group Ltd. 2016; 73(1):A171-2. [
Crossref]
26. Piranveyseh P, Motamedzade M, Osatuke K, Mohammadfam I, Moghimbeigi A, Soltanzadeh A, et al. Association between Psychosocial, Organizational and Personal Factors and Prevalence of Musculoskeletal Disorders in Office Workers. Int J Occup Saf Ergon. 2016; 22(2): 267-73. [
Crossref]
27. Samadi H, Rostami M, Bakhshi E, Garosi E, Kalantari R. Can Educational Intervention be Useful in Improvement of Body Posture and Work Related Musculoskeletal Symptoms? J Hum Environ Health Promot. 2018; 4(2): 81-6. [
Crossref]
28. Alizadeh SS, Mortazavi SB, Mehdi Sepehri M. Assessment of Accident Severity in the Construction Industry Using the Bayesian Theorem. Int J Occup Saf Ergon. 2015; 21(4): 551-7. [
Crossref]
29. Seifi Azad Mard HR, Estiri A, Hadadi P, Seifi Azad Mard M. Occupational Risk Assessment in the Construction Industry in Iran. Int J Occup Saf Ergon. 2017; 23(4): 570-7. [
Crossref]
30. Baratchi M, Mansouri N, Ahmadi A. Hazard Assessment Matrix; Results of a Delphi Study. J Hum Environ Health Promot. 2018; 4(3): 121-5. [
Crossref]